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Chapter 12. GENERAL EQUILIBRIUM ANALYSIS II 
 
 
12.1 Regular competitive equilibrium 
 
Equilibrium existence is a prerequisite for studying the theory of 

competitive equilibrium. If the equilibrium did not exist, the theory would 
contain contradicting relations and would be logically inconsistent. A 
different logical problem is the uniqueness of the equilibrium, in the sense 
that the possibility of multiple equilibria existence does not invalidate the 
logical consistency of the theory (and, possibly, its empirical validity). 
Nevertheless, it makes the theory unable to determine exchanges, 
production and prices. Therefore, we need a complementary or more general 
theory that would allow us to screen among different equilibria by 
examining the conditions that lead to one or another equilibrium.1  

Let’s consider, as example, the case of an economy with free disposal, 
two goods and a continuous and differentiable aggregate excess demand 
function that satisfies the desirability condition (according to Definition 
11.5, that is E1(p1, p2) > 0 for p1 = 0 and E2(p1, p2) > 0 for p2 = 0). Therefore, 
equilibrium prices p1*, p2* are positive and  equilibrium is described by 
conditions E1(p1*, p2*) = 0 and E2(p1*, p2*) = 0. Homogeneity of degree 
zero of the excess demand function implies that this function has the 
exchange ratio p1/p2 as its argument. Therefore, the prices can be 
normalized, for example by assuming (p1, p2)∈S1, so that p1+p2 = 1. By 
desirability condition E1(0, 1) > 0 and E2(1, 0) > 0. As a result of Walras 
law, since p1E1(p1, p2)+p2E2(p1, p2) = 0, we get that equilibrium is not only 
determined by only one condition, for example by E1(p1*, p2*) = 0 (since 
the condition E2(p1*, p2*) = 0, because p1*, p2*∈(0, 1), is automatically 
satisfied if the first one is), but also that E1(1, 0) = 0 with E1(p1, p2) < 0 for 
values of p1 close to 1. (In fact, since by continuity E2(p1, p2) > 0 for values 
of p2 close to zero, that is for values of p1 close to 1, Walras law requires 
E1(p1, p2) < 0 for values of p1 close to 1 and by continuity E1(p1, p2) ≤ 0 for 
p1 = 1. Moreover, if p1 = 1, then E1 = 0 because none of the agents wants to 

1 It maybe useful to make an analogy. Let’s consider the static equilibrium of a dice. 
Mechanics makes sure that the rest on a plane is in static equilibrium position if the vertical 
of the gravity center of the dice crosses the supporting plane in a point belonging to convex 
hull of the supporting points of the dice. Therefore, a dice has 26 equilibrium positions, 
from which 6 are stable (the ones in which the dice rests on a side) and 20 are instable (the 
dice rests on an edge or a vertex). The multiplicity of equilibria does not yield static 
mechanics, in some sense, false or unimportant, but only insufficient to determine 
unambiguously the resting position of a dice. (However, keep in mind that the term “static” 
has a different meaning in mechanics than in economics).   
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sell his endowment of the first good and so to have a negative excess 
demand for it as soon as he can have his desired quantity of the second good 
for free). In Figures 12.1, 12.2 and 12.3 we represent three functions E1(p1, 
p2) that satisfy all the indicated conditions (that guarantee existence of 
equilibrium with p1*∈(0, 1)), but which are different with respect to the 
number of equilibria. Recall that the desirability condition requires that the 
prices in equilibrium are positive, that is p1*, p2*∈(0, 1), and so, even if 
E1(1, 0) = 0, the prices p1 = 1, p2 = 0 do not describe an equilibrium: in fact 
E2(1, 0) > 0.    

 

 
 

Figure 12.1 depicts the case in which there is only one equilibrium. 
Figure 12.2 the case in which there is multiplicity of isolated (or locally 
unique) equilibria. Figure 12.3 the case with a continuum of equilibria (in 
this figure there is an interval of equilibrium prices).  

With respect to an economy with only two goods, these figures allow 
for an immediate characterization of the conditions that determine which of 
the cases occurs. We have unique global equilibrium (like in Figure 12.1) if 
the excess demand function (continuous, differentiable and with both goods 
desirable) has negative derivative in every equilibrium and only if this 
derivative is not positive: i.e. if E1(p1*, p2*) = 0 for p1* < 1 implies 

1 1 1 2D ( *, *) 0p E p p <  and only if it implies 
1 1 1 2D ( *, *) 0p E p p ≤ . We have that 

an equilibrium is isolated if the excess demand function derivative is not 
equal to zero in this equilibrium: i.e. (p1*, p2*) is an isolated equilibrium if 
E1(p1*, p2*) = 0, p1* < 1, and 

1 1 1 2D ( *, *) 0p E p p ≠ . All the equilibria are 
isolated (as in Figure 12.2) if the excess demand function has a non zero 
derivative in every equilibrium: that is if E1(p1*, p2*) = 0 for p1* < 1 implies 

1 1 1 2D ( *, *) 0p E p p ≠ . Note that there must be a finite number of isolated 
equilibria. There is a continuum of equilibria (as in Figure 12.3) only if 

1 1 1 2D ( *, *) 0p E p p =  for a (p1*, p2*) with E1(p1*, p2*) = 0.  

Finally, note that the situation depicted in Figure 12.3 is not robust 
with respect to changes in excess demand function. It is enough to change it 
only a little bit and the continuum of equilibria disappears (as shown in 
Figure 12.4). The cases depicted in Figures 12.1 and 12.2 are, on the other 
hand, robust (or structurally stable). A small change in the excess demand 

p1 0 1 
p1* 

Figure 12.1 

E1(p1,p2) 

p1 0 1 

Figure 12.2 

E1(p1,p2) 

p1 0 1 

Figure 12.3 
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function does not destroy the unique equilibrium (in Figure 12.1) and 
isolated equilibria and their number (in Figure 12.2), as shown in Figure 
12.5. In Figure 12.6 we show, instead, a case in which equilibria are isolated 
but their number is not robust. Note that, in this figure, the derivative of the 
excess demand function with respect to price is equal to zero in the non 
robust equilibrium. Note also that if all equilibria are robust then their 
number is odd.  

 

 
 

We can now conjecture, basing on an economy with two goods, that 
the robustness property is strictly linked to condition 

1 1 1 2D ( *, *) 0p E p p ≠ . 
So far we have shown that it holds for an economy with two goods. Now we 
need to verify whether it holds for k goods. 

In the following analysis we study economies with single-valued2 
aggregate excess demand functions (that is, not correspondences but proper 
functions) E: k

+ → Z, where 1
n
i iZ X== −∑ 1 {Ω}m

j jY= −∑ , assuming that they 
are continuous, differentiable, homogenous of degree zero (that is, E(αp) = 
E(p) for every α > 0 (so the prices can be normalized for example setting 
p∈ 1kS − ) and satisfy Walras law (that is, pE(p)  = 0 for every p∈ 1kS − ) and 
desirability condition for all the goods (that is, for every h = 1,…, k, we 
have Eh(p) > 0 for every p∈ 1kS −  with ph = 0).  

It has already been noted that for such economies equilibrium exists 
and that every equilibrium vector of prices is positive (Paragraphs 11.4 and 
11.6). Equilibrium vectors of prices p* in such economies are determined by 
the following equations 

E(p) = 0 

This system has not more than k−1 independent equations because of the 
linear dependence introduced by Walras law. There are also k−1 unknowns 
even if there are k prices, since functions E(p) are homogenous of degree 

2 In production economy this hypothesis excludes possibility of constant returns to 
scale. As a result, very often the following arguments are referred to as to pure exchange 
economies. There are, however, extensions that apply also to the cases in which aggregate 
excess demand is a correspondence. Dierker (1982) presents a review of the questions that 
we rise in this paragraph including also this case in the analysis. 

p1 0 1 
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zero, so that we can normalize prices, by for example setting p∈ 1kS − , so 
with 1 1k

h hp= =∑ . We can discard one equation from the system, for example 
the k-th equation (it will be automatically satisfied if the others are) and one 
price, for example pk (it is automatically determined when other prices are 
determined). Therefore, we can consider excess demands for the first k−1 
goods and their prices, that is vectors [ 0]E I E=   and [ 0]p I p=  , where I 
is the identity matrix with k−1 rows and columns and 0 is the zero vector. 
Thus, in what follows, we consider a system of k−1 equations 

    hE (p1,…, pk) = 0,                                                          h = 1,…, k−1 
and a normalization condition, for example p∈ 1kS − , when we want to 
determine all the prices (not only the exchange ratios). 

The following propositions are independent of the normalization rule 
that we adopted for the prices (even if they are presented using the 
normalization 1kp S −∈ ). To be precise, we could obtain the same properties 
independent of the kind of price normalization applied. Another, frequently 
used, normalization (that is possible because the prices in equilibria are 
positive) sets the price of one of the goods equal to one, for example pk = 1. 
That is, it takes the k-th good as the accounting unit, and so the prices 
become the exchange ratios with respect to this good. 

Let’s introduce the following definitions 

Definition 12.1 (Regular equilibrium and economy) An equilibrium 
vector of prices p*∈ 1kS −  is regular if the Jacobian matrix D ( *)pE p



  is not 
singular (i.e. its determinant is not equal to zero). An economy is regular if 
all the equilibrium price vectors are regular. 

The regularity condition implies local uniqueness and a finite number 
of equilibria, as shown in the following propositions. 

Proposition 12.1 In a regular equilibrium every vector of prices is 
isolated (or locally unique), that is if  p*∈ 1kS −  is regular, then there exists 
an ε > 0 such that E (p) ≠ 0 for every *p p≠   with  *p p−  < ε, where 

[ 0]p I p=   with p∈ 1kS − .  
Proof. Taylor series expansion of ( )E p  in the neighborhood of 

p*∈ 1kS − , since ( *)E p  = 0, gives ( )E p  = D ( *)pE p


 dp  + … As a result, we 

get ( )E p  ≠ 0 for every dp  ≠ 0 because the matrix D ( *)pE p


  is not singular. 

By continuity, we get ( )E p  ≠ 0 in the neighborhood of  p* in 1kS − .       � 

Proposition 12.2  A regular economy has a finite number of 
equilibrium price vectors. 

Proof. By continuity of function ( )E p  we get that the set of 
equilibrium price vectors (derived from condition ( )E p  = 0)  is closed. This 
set is also bounded (since 1kS −  is bounded). Moreover, it is discrete, because 
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its points, by Proposition 12.1, are isolated. As a result, the set of 
equilibrium price vectors, that is compact and discrete, is also finite and 
composed of a finite number of points.   � 

We can also prove that a regular economy has an odd number of 
equilibria. In order to do it, we apply a differential topology theorem (index 
theorem).  

Definition 12.2 (Index of a regular equilibrium and of a regular 
economy) We define  

ind p* = (−1)k − 1 sign det D ( *)pE p


  
as the index of a regular equilibrium price vector, where the symbol “sign” 
is such that sign β = 1 if β > 0 and sign β = −1 if β < 0. Then, recalling that 
by Definition 12.1 det D ( *)pE p



  ≠ 0, the index can take on value 1 or −1. 

(In case with only two goods, the index is equal to 1 if 
1 1 1 2D ( *, *) 0p E p p <  

and equal to −1 if 
1 1 1 2D ( *, *) 0p E p p > ). We define the index of a regular 

economy, recalling that it has a finite number of equilibria, as the sum of the 
indexes of its equilibrium price vectors, that is 1{ * : ( *) 0}ind *kp S E p p−∈ =∑ 

. 

Proposition 12.3 If an economy is regular, then 
1{ * : ( *) 0}ind * 1kp S E p p−∈ = =∑ 

. This implies that the number of equilibrium price 
vectors is odd. In fact, a sum of elements equal to 1 or to −1 is equal to 1 
only if the number of the  elements is odd.  

Proof. Instead of the formal proof we provide an intuition for the fact 
that a regular economy has an odd number of equilibria. Let’s introduce an 
economy with the same goods as the economy under examination and with 
only one equilibrium price vector. Moreover, let this economy be 
characterized by a continuous and differentiable excess demand function 
ˆ ( )E p  and by a positive equilibrium price vector ˆ* 0p >> . Consider the 

function ( , λ)E p′ = ˆλ ( ) (1 λ) ( )E p E p+ −  with λ∈[0, 1], where ( )E p  is the 
aggregate excess demand function of the examined economy, and consider 
the equilibrium condition ( , λ) 0E p′ = . This system is composed of k−1 
equations and k unknowns (k−1 prices and λ). The solutions, which are the 
points in the set {p∈ 1kS − , λ∈[0, 1]: ( , λ) 0E p′ = }, have one degree of 
freedom and are represented by curves in the set  {p∈ 1kS − , λ∈[0, 1]}. These 
prices are never equal to zero (or to 1) because desirability condition holds. 
In Figure 12.7 we show a possible situation for the case with k = 2 with 
respect to the price  p1 (recall that p2 = 1−p1), The same reasoning can be 
used for the case with k > 2. The solutions {p∈ 1S , λ∈[0, 1]: ( , λ) 0E p′ = } 
are depicted by the curves drawn inside the rectangle. They are either closed 
curves or they intersect the sides of the rectangle defined by λ = 0 and λ = 1. 
The curves never break for λ∈(0, 1) because function ( , λ)E p′  is 
continuous. (In fact, since the sign of ( , λ)E p′  is different over and under 
every part of the curve, while on the curve we have ( , λ)E p′  = 0, if the 
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curve breaks for λ∈(0, 1), then we can go from a negative value of ( , λ)E p′  
to a positive value without crossing at zero, a possibility that is excluded by  

 

 
 

 

the continuity of ( , λ)E p′ ). Moreover, since the examined economy is 
regular, there are no curves tangent to λ = 1. There is a unique intersection 
at λ = 0, because ˆ ( ) 0E p =  has a unique solution. Then, since there is only 
one intersection point at λ = 0, as every curve has an even number or none 
intersections with the sides of the rectangular defined by λ = 0 and λ = 1, it 
follows that there is an odd number of the intersection points at λ = 1. 
Therefore, ( ) 0E p =  has an odd number of solutions. (The indexes for the 
solutions at λ = 0 and λ = 1 are shown in the figure in parenthesis and are 
determined by observing the changes of the sign of E′).    �                                                                                              

Until now we have considered regular economies. Now, we will 
examine if they generally occur or not, in order to understand whether non 
regular economies could be relevant as well. (This problem is connected to 
something that we have already seen for an economy with two goods, where 
the non regular economies were shown to be structurally unstable). We will 
show, in the following reasoning, that regularity is a generic  (or normal) 
property. In order to do it we will first define what a generic property is. 

Consider a set of economies and the set of the aggregate excess 
demand function ( )E p  corresponding to them. We can represent this set of 
functions (one for each economy) with { ( ; )E p c : c∈C}, where C is a set of 
parameters, such that each of its elements c characterizes one economy. That 
is, each economy is characterized by one particular vector c, so its aggregate 
excess demand function becomes ( ; )E p c . In rough terms, a property of 

( )E p  is generic if it holds for every c in C or for almost every c in C.  We 

λ 1 

1 

p1 

0 
0 

Figure 12.7 
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will soon provide a more precise definition for a case in which C is a subset 
of an Euclidian space with a finite number of dimensions γ that define the 
measure. (If C is an interval in  , that is γ = 1, then the possible measure is 
length; if C is a non degenerate subset of 2

 , that is γ = 2, the measure 
could be an area; and so on).3  

A definition of generic property (analysis studied and presented by 
Mas–Colell, 1985) states that a property is generic if it holds for a subset of 
C of full measure, that is it does not hold in a subset of C of zero measure. 
(If C is an interval in  , then a property is generic if it holds for every c in 
C, except, possibly, in isolated points of C, etc.).  

In order to understand the significance of a generic property one 
should realize that if c is determined according to a non atomic probability 
distribution over C (as is the uniform distribution, or the normal non 
degenerate distribution), then the probability that the generic property does 
not hold is equal to zero (that is, the generic property occurs with 
probability equal to 1, although not necessarily with certainty). Another 
intuitive explanation (close to the notion of structural stability) indicates that 
a property is generic if it is robust to a perturbation of c (that is, it holds for 
almost all points in the neighborhood of c). 

The proposition that states that the regularity of an economy is a 
generic property comes out of the transversality theorem (that will be 
presented without a proof, with respect to the examined problem, 
considering, as usual, [ 0]E I E=   and [ 0]p I p=  ). 

Transversality theorem. If function ( ; )E p c , with 1: kE S C Z− × → , 
has, with respect to the pairs ( , )p c  for which ( ; )E p c  = 0, Jacobian matrix 

.D ( ; )p cE p c


  with rank k−1, then the submatrix D ( ; )p E p c


  has, with respect 
to the pairs ( , )p c  for which ( ; )E p c  = 0, generically (that is, for almost 
every c) rank k−1. 

Note that the matrix .D ( ; )p cE p c


  has k−1 rows and k−1+γ columns, 

while the matrix D ( ; )p E p c


  has k−1 rows and columns, so the condition that 
the rank is equal to k−1 is much more stringent for the second matrix. This 
theorem implies that if the economies are sufficiently variegated, then 
regularity is a generic property, that is it is almost certain (with probability 
equal to 1 for a randomly chosen economy) that the regularity condition is 
satisfied. 

In Paragraph 12.5, where we analyze comparative statics of general 
competitive equilibrium, we consider, in particular, a case in which the set 

3 There exists a general theory of measure which one can refer to for extensions 
(presented, for example, by Kirman, 1981). A measure can also be defined for functional 
spaces (i.e., with infinite dimensions). Moreover, the definition of generic property can be 
provided even when measurability is absent.  
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of the possible economies consists of the economies that differ from each 
other in the endowments of the consumers. Therefore, the characteristic c is 
represented by the initial allocation nk

+ω∈ , where ω = (ω11,…, ω1k,…, 
ωn1,…, ωnk). The following proposition shows that the matrix ωD ( ;ω)E p  
and, consequently, the matrix ,ωD ( ;ω)p E p



  are of rank k−1. 

Proposition 12.4 The matrix ωD ( ;ω)E p  is of rank k−1 for every 
p∈ 1kS −  and nk

+ω∈  with 1
n k
i i= ++Σ ω ∈ . 

Proof. If we prove that the rank of the Jacobian matrix ωD ( ;ω)E p  is 
equal to k−1 for one particular change of ω, then we have also proved that 

ωD ( ;ω)E p  is of rank k−1 with respect to the general change of ω. Let’s 
order the consumers in such a way that 1ω 0k >  and let’s consider a change 
dω1 of the first consumer’s endowment that leaves his wealth unchanged, 
that is with 1 1

1 11 1dω (1 )dωk k
h hh h khp p− −
= =+ −∑ ∑ = 0. The bundle of goods that he 

chooses is not modified by this change. His excess demand that was 
1 1( ;ω )e p  before the change becomes 1 1 1( ;ω ) dωe p − , so the change of his 

excess demand is equal to 1dω− . Since nothing changes for the other agents, 
this is also the change of aggregate excess demand. The change 1

1 1(dω )k
h h

−
=  is 

arbitrary, because 1ω 0k >  and 1
11 1

1dω dωk
hk h h

k

p
p

−
== − ∑  (recalling that  

pk∈(0, 1)). Denoting the vector 1
1 1(dω )k
h h

−
=  with 1dω , we get that the excess 

demand for the first k−1 goods, that was ( ;ω)E p  before the change, 
becomes 1( ;ω) dωE p −

 , so 
1ωD ( ;ω)E p I= −


 , where I is the identity matrix 
of rank  k−1, and symbol 

1ωD


denotes the matrix of the derivatives with 

respect to 1
1 1(ω )k
h h

−
= .   � 

Applying the transversality theorem to Proposition 12.4, we 
immediately get the following proposition. 

Proposition 12.5 The regularity of an economy represented by an 
aggregate excess demand function ( ;ω)E p  is a generic property in the 
space of the economies characterized by nk

++ω∈ .  
 
 
12.2 Global uniqueness of competitive equilibrium 
 
The condition that the economy is regular together with index theorem 

allow us to have locally unique equilibria. Moreover, if we impose one more 
condition we are able to have also global uniqueness. This condition is an 
extension of what we have already seen for an economy with only two 
goods. Namely, a regular economy, represented by a continuous and 
differentiable excess demand function that satisfies desirability condition, 
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exhibits only one equilibrium if and only if the equilibrium implies that the 
derivative of the excess demand function is negative. Recall that [ 0]E I E=   
and [ 0]p I p=  . 

Proposition 12.6 A regular economy, characterized by a continuous 
and differentiable excess demand function E: 1kS − →Z that satisfies 
desirability condition for all the goods, has only one equilibrium if and only 
if the equilibrium condition E(p*) = 0 implies (−1)k−1det D ( *)pE p



  > 0, i.e. 

det ( D ( *))pE p−


  > 0 . 
Proof. On one hand, since the economy is regular, the sum of the 

indexes (each equal to 1 or −1) of equilibrium price vectors is equal to 1 by 
Proposition 12.3. On the other hand, the condition “E(p*) = 0 implies 
(−1)k−1det D ( *)pE p



  > 0” requires, recalling Definition 12.2, that the index 
is equal to 1 in every equilibrium. Consequently, the proposed condition is 
both necessary and sufficient for the global uniqueness of equilibrium.   � 

Proposition 12.6 is very formal. It does not highlight the 
characteristics of the economy with only one equilibrium. Nevertheless, we 
can draw the following, economically significant, implication.  

If the Jacobian matrix DpE(p) of the aggregate excess demand 
function E(p) is symmetric and negative semidefinite, then 
(−1)k−1det D ( )pE p



  ≥ 0. (In fact its principal minors of even order have non 
negative sign and the odd ones have non positive sign. Therefore, 
det D ( )pE p



 , which is a principal minor of order k−1, has non negative sign 
if k is odd and non positive sign if k is even). Recalling that E(p) = 

1 1( ) ω ( )n m
i ji i jd p s p= =− −∑ ∑  and that the sum of (symmetric) negative 

semidefinite matrices is a (symmetric) negative semidefinite matrix, the 
condition (−1)k−1det D ( )pE p



  ≥ 0 is satisfied if all Jacobian matrices Dpdi(p), 

for i = 1,…, n, and −Dpsj(p), for j = 1,…, m, are symmetric and negative 
semidefinite. The analysis of production choice guarantees that the matrices 
Dpsj(p) are symmetric and positive semidefinite (Proposition 5.8), so the 
matrices −Dpsj(p) are symmetric and negative semidefinite. However, the 
analysis of consumption choice (in particular, Paragraph 4.5 and Proposition 
3.14) indicates that the matrices Dpdi(p) are composed of two parts, the one 
that shows the substitution effect corresponds to Slutsky matrix which is 
symmetric and negative semidefinite, while the other, that shows the income 
effect, generally is neither symmetric nor negative semidefinite and so the 
matrices Dpdi(p) are not in general negative semidefinite. They are negative 
semidefinite if the substitution effect prevails, that is if the income effect is 
small with respect to substitution effect. We can, therefore, deduct that 
equilibrium is globally unique if consumers’ demand functions show an 
income effect that is much smaller than substitution effect, or if income 
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effect does not change the sign of det D ( )pE p


 . The following definitions 
and propositions are logically linked to this result.  

Definition 12.3 (Gross substitutes goods for the aggregate excess 
demand function) The h-th good is gross substitute with respect to the t-th 

good, with h ≠ t and h, t = 1,…, k, if ( ) 0h

t

E p
p

∂
∂

> . 

Proposition 12.7 A regular economy, characterized by a continuous 
and differentiable aggregate excess function E: 1kS − →Z that satisfies 
desirability condition for all the goods, has only one equilibrium if all the 
goods are gross substitutes for each other in equilibrium. That is, for every 
p*∈ 1kS −  with E(p*) = 0, we have D

tp Eh(p*) > 0 for every h, t = 1,…, k 
with h ≠ t. 

Proof. By Walras law pE(p) = 0 for every p∈ 1kS − . Differentiating this 
relationship with respect to p, we obtain (DpE(p))Tp + E(p) = 0. So, we get 
that in every equilibrium (DpE(p*))Tp* = 0. Let’s consider the excess 
demand functions for the first k−1 goods and their prices, that is the vectors 

[ 0]E I E=   and [ 0]p I p=  , where I is the identity matrix with k−1 rows 
and columns and 0 is the zero vector. Recalling that the gross substitution 
condition requires D ( *) 0

hp kE p >  for every h ≠ k and that pk* > 0, we get 

( D ( *)pE p


 )T *p << 0, i.e. (−D ( *)pE p


 )T *p >> 0. The matrix (−D ( *)pE p


 )T 
has, by gross substitution, all the elements negative, except for those on the 
main diagonal. Therefore, according to Hawkins-Simon4 conditions, all the 
principal minors of the matrix (−D ( *)pE p



 )T, and so also the ones of the 

matrix −D ( *)pE p


 , are positive. Thus, the determinant of the matrix 

−Dp ( *)E p  is positive, that is det ( D ( *))pE p−


  = (−1)k−1 det D ( *)pE p


  > 0. 

As a result, by Proposition 12.6, the equilibrium is unique.   � 

The condition that all the goods are gross substitutes is strong, in 
particular in case of production. (In fact, an increase in price of one input 
can reduce the demand for the other input used in the same production even 
if the inputs are not complements, because it reduces the quantity of output). 

Another very severe sufficient condition for equilibrium uniqueness is 
obtained by extending the weak axiom of revealed preferences (WARP) to 
aggregate excess demand function. WARP (Definition 4.1) is always 
satisfied by the demand function of one consumer (represented by a regular 
system of preferences), but not by the aggregate demand function (as shown 

4 According to Hawkins-Simon conditions (introduced in the input-output analysis 
presented in footnote 15, Chapter 5), for a square matrix B with all components non 
positive, except for those on the main diagonal, i.e. with bij ≤ 0 for i ≠ j,  the followings are 
equivalent: a) there exists an x ≥ 0 such that Bx > 0; b) all the principal minors of B are 
positive. 
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and presented in Proposition 4.9). For one consumer WARP requires that if 
pei(p′) ≤ 0 and ei(p′) ≠ ei(p), then p′ei(p) > 0 (by Definition 4.1, setting mi = 
pωi, mi′ = p′ωi, ei(p) = di(p,m)−ωi and ei(p′) = di(p′,m′)−ωi). For the 
aggregate excess demand function WARP would require that if pE(p′) ≤ 0 
and E(p′) ≠ E(p), then p′E(p) > 0. The following proposition holds. 

Proposition 12.8 A regular economy, characterized by an aggregate 
excess demand function E: 1kS − →Z that satisfies desirability condition for 
all the goods, has only one equilibrium if the aggregate excess demand 
function satisfies the weak axiom of revealed preferences, that is if the 
inequalities pE(p′) ≤ 0 and E(p′) ≠ E(p) imply p′E(p) > 0. 

Proof. By contradiction, let there be two equilibrium price vectors 
p*,p**∈ 1kS −  and let p = αp*+(1−α)p** with α∈(0, 1). If it were E(p) ≠ 0, 
then, since E(p*) = E(p**) = 0 and so pE(p*) = pE(p**) ≤ 0, by WARP we 
get that p*E(p) > 0 and  p**E(p) > 0 and so also (αp*+(1−α)p**)E(p) > 0, 
that is pE(p) > 0. Then, since Walras law requires pE(p) = 0, we must have 
E(p) = 0 for every p = αp*+(1−α)p**, which is in contradiction with the 
condition imposed by regularity of the economy, that says that equilibria are 
isolated. Therefore, there cannot exist two equilibrium price vectors.  � 

Weak axiom of revealed preferences, as already mentioned, is not in 
general satisfied by the aggregate excess demand function. However, it is 
satisfied in some particular cases. For example, WARP is satisfied if the 
Antonelli-Nataf-Gorman aggregation conditions (introduced in Proposition 
4.6) hold. In fact, in such a case, by Proposition 4.7, aggregate demand 
function of consumers is rationalizable. That is, it is possible to introduce a 
representative agent whose demand function D(p,M), where M = pΩ+pS(p), 
coincides with the aggregate demand function. The wealth of the 
representative agent is equal to the aggregate wealth of the consumers, that 
is, for i = 1,…, n, mi = pωi+ 1θ ( )m

j ij jps p=∑ , by which M = 1
n
i im= =∑  

1 ( ) ( )m
j jp p s p p pS p=Ω + = Ω+∑ . The function D(p, M) satisfies WARP, so, 

by Definition 4.1, we get that pD(p′,M ′) ≤ M and D(p′,M ′) ≠ D(p,M) imply 
p′D(p,M) > M ′. Since E(p) = D(p,M)−Ω−S(p), we get that p(E(p′)+Ω+S(p′)) 
≤ p(Ω+S(p)) implies p′(E(p)+Ω+S(p)) > p′(Ω+S(p′)). That is, pE(p′) ≤ 
pS(p)−pS(p′) implies p′E(p) > p′S(p′)−p′S(p), if E(p′)+S(p′) ≠ E(p)+S(p). In 
the examined case, where supply is a single-value function, the profit 
maximization (that holds in aggregate as shown in Paragraph 5.7) requires 
not only pS(p)−pS(p′) ≥ 0 and p′S(p′)−p′S(p) ≥ 0, but also pS(p)−pS(p′) > 0 
and p′S(p′)−p′S(p) > 0, since otherwise both S(p) and S(p′) would maximize 
profit. As a result, condition pE(p′) ≤ 0 implies pE(p′) ≤ pS(p)−pS(p′) and 
this implies p′E(p) > p′S(p′)−p′S(p) > 0. That is, as required by Proposition 
12.8, pE(p′) ≤ 0 implies p′E(p) > 0 if E(p′) ≠ E(p). (Note, moreover, that the 
conditions pE(p′) ≤ 0 and E(p′) ≠ E(p) imply E(p′)+S(p′) ≠ E(p)+S(p), since, 
otherwise, that is if E(p′)+S(p′) = E(p)+S(p), we would get pE(p′) = 
pE(p)+pS(p)−pS(p′) = pS(p)−pS(p′) > 0,  while by assumption pE(p′) ≤ 0).  
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12.3 Equilibrium stability in logical time (or with tâtonnements) 
 
The problem of equilibrium stability arises in the case of general 

competitive equilibrium, just like for the partial equilibrium before. The 
purpose of this analysis is to characterize equilibria with respect to their 
possible occurrence. Therefore, by testing whether the market behavior 
leads to them or not. Note that analysis of equilibrium stability is concerned 
with the phase in which equilibrium is established (indicated in Chapter 10). 
It consists of negotiation and contracting process that gives rise to 
equilibrium prices and allocations. (The analysis that we have carried out 
until now has, on the contrary, examined the conditions that define 
equilibrium but not the process that leads to it). Therefore, equilibrium is 
defined as stable if it is a result of negotiation and contracting. A way to test 
equilibrium stability is to perturb it and observe whether after perturbation 
stops equilibrium reemerges. 

An analogy to mechanics can be useful. Imagine a material point (that 
is, a point with a mass) resting on the ground and under gravity force. 
Stationary equilibria are the points of the ground with zero slope, as shown 
in Figure 12.8. Some of those points are stable equilibria (points S1, S2 and 
S3), some unstable (points I1, I2 and I3). A small perturbation from the first 
ones (represented as a change of the position of the material point) is 
followed, after the perturbation stops, by a movement towards the previous 
equilibrium position. The perturbation from the second ones is followed by 
a movement away from them. 

 
From this figure we can deduce that determination of equilibrium and 

stability conditions (recalling, respectively, that the drawn profile has first 
derivative equal to zero and, in equilibrium position, the second one 
positive) does not require complete determination of the material point 
dynamics, but only of one of its components (that is only that the gravity 
force is directed downward). In other words, stability property concerns 
equilibrium position, also if the notion of stability presupposes a dynamic 
adjustment process, that is not to be necessarily specified, in the sense that 
the same position can represent a stable equilibrium with respect to multiple 
dynamic processes. (In Paragraph 10.4 we show how partial equilibrium is 

I1 
I2 

I3 

S1 

S2 

S3 

Figure 12.8 
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stable if the demand function is decreasing and supply function is increasing 
both for the dynamic Walrasian process and the Marshallian process). 

After an equilibrium is defined, in order to research its stability 
conditions we need to form a hypothesis how to perturb it and what dynamic 
process will occur afterwards. Stability conditions are those that determine 
return to equilibrium. In what follows, we hypothesize that the perturbation 
hits the prices and that the dynamic process is realized by a Walrasian 
auctioneer, introduced in Paragraph 10.4. The auctioneer announces a vector 
of prices (note that the market is unique also if there are k goods), to which 
the agents (consumers and producers) respond by reporting their willingness 
to buy and sell. The reported values are executed only if the price vector 
constitutes an equilibrium. The auctioneer controls whether there is an 
equilibrium, that is whether the aggregate excess demand is zero (or not 
positive, if we allowed for free goods). If it is zero, then the auctioneer 
closes the process and the agents execute the exchanges that they 
communicated to the auctioneer. If the aggregate excess demand is not equal 
to zero, the auctioneer announces a new vector of prices, and so on. During 
the dynamic process represented by auctioneer’s sequence of price 
announcements no exchanges or production processes are carried out and 
other “data” about this economy (number of agents, their preferences and 
endowments, number of firms and their technology) remain unchanged. In 
this sense, the contracting phase takes place in a fictitious time, logical time, 
when the examined economy does not undergo any modification. (There are 
other types of stability analysis, which we examine in the following 
paragraph, that allow for exchanges during contracting phase and so the 
economy is modified. In such a case, the adjustment to equilibrium takes 
place in real time). The analysis in logical time is substantially based on an 
assumption about the duration of the adjustment process of market prices: it 
is supposed to be much shorter than the time required by changes in the 
“data” of the economy. The dynamic process is determined by auctioneer’s 
announcements. Following the Walrasian assumptions, we assume that 
auctioneer proceeds by tâtonnements, rising prices of the goods that have 
positive excess demand and reducing prices of the goods with negative 
excess demand. This rule is often called the market law. In the following 
analysis we assume that this dynamic process occurs continuously, that is 
that a sequence of prices announced by the auctioneer is represented by 
function p(t), with t +∈ .  

For an economy with only two goods we can refer to Figure 10.5. Let 
aggregate excess demand function for the two goods be E1(p1/p2) and 
E2(p1/p2). In such a case, an equilibrium 1 2( *, *, *, *)x y p p , where x* = 
(xi*) 1

n
i=  and y* = (yj*) 1

m
j= , is stable if 

1 2/ 1 1 2D ( * / *) 0p p E p p <  (and so, 
accounting for Walras law, 

1 2/ 2 1 2D ( * / *) 0p p E p p > ), and it is unstable if 

1 2/ 1 1 2D ( * / *) 0p p E p p > . (In Figure 10.5 symbol E indicates E1 and symbol p 
indicates the exchange ratio p1/p2).  
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We immediately see that if the aggregate excess demand function E(p) 
is continuous and satisfies desirability condition, then there is at least one 
stable equilibrium point. Moreover, if the economy is regular, then stable 
and unstable equilibria alternate, the first ones are in number equal to the 
half of the (uneven) number of equilibria plus ½ and the second ones in 
number smaller by one than the number of stable equilibria. 

Finally, equilibrium that is realized here depends on the first exchange 
ratio announced by the auctioneer. If there is only one equilibrium exchange 
ratio, it will always be reached independent of the first announcement of the 
auctioneer. If there are many equilibria, it leads to the stable equilibrium 
exchange ratio that is included in the interval between the two unstable 
equilibrium exchange ratios where the first exchange ratio announcement of 
the auctioneer belongs (if this exchange ratio is not between two unstable 
equilibria, the nearest equilibrium exchange ratio is reached). If the 
auctioneer’s first announcement is the exchange ratio that corresponds to an 
unstable equilibrium, then this unstable equilibrium is realized. This is the 
only way that this unstable equilibrium can arise. 

Conclusions obtained for an economy with only two goods do not 
hold for economies with more goods. The analysis of those economies is 
more complex. (The first attempts by Walras, 1900, and Hicks, 1939, were 
abandoned. They considered a sequence of auctioneer’s announcements in 
discrete time and introduced questionable or inconclusive assumptions. 
Modern analysis, which is dynamic and in continuous time, derives from the 
contribution by Samuelson, 1941). 

In the stability analysis in continuous time, market behavior 
(represented by the auctioneer) is usually indicated by a system of 
differential equations of the type 

          d ( ) ( ( ( )))
d
h

h h
p t f E p t

t
=  ,                                                          h = 1,…, k 

where fh(.) is, for h = 1,…, k, a function that keeps the sign of its argument 
(that is fh (a) ≥ 0 if a ≥ 0 and fh (a) ≤ 0 if a ≤ 0). Equilibrium ( *, *, *)x y p  is 
stable if lim ( ) *

t
p t p

→∞
=  for the function p(t) that solves this system. (Note, 

that this limit, if it exists, necessarily gets the equilibrium vector of prices. 

In fact, lim ( ) *
t

p t p
→∞

=  implies d ( )lim 0
d
h

t

p t
t→∞

=  and so lim ( ( ( )) 0h ht
f E p t

→∞
= , 

that is lim ( ( )) 0ht
E p t

→∞
= , for every h = 1,…, k). Stability conditions are 

represented by the conditions on the functions fh(.) and Eh(.), for h = 1,…, k, 
that determine the occurrence of stability. 

A theory that would explain the preceding behavior of the auctioneer 
does not exist. In particular, it is not a result of choice. Moreover, there is 
not any reason why it corresponds to a system of differential equation of 
first and not higher order. We can only say that this is the simplest system 
that guarantees the market law. i.e. that the price of a good increases (falls) 
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if its excess demand is positive (negative). This justification explains also 
why the variation in price of one good depends only on the excess demand 
for this good and not also on the excess demand for other goods. However, 
if the aim of the auctioneer was to achieve an equilibrium, a different 
behavior would be more efficient. The auctioneer could even determine all 
the equilibria with the information that he can receive through the agents 
answers to the announced prices.5  

The kind of behavior which is assumed by the standard analysis of 
stability corresponds to an auctioneer that keeps track of only the excess 
demands corresponding to the prices announced last, neglecting all the 
information obtained before. In other words, we assume that, although the 
market is organized, it behaves in an elementary way, with bounded 
rationality. Stability or instability of equilibrium is, obviously, relative to the 
market behavior that was assumed, expressed by a system of differential 
equations. With respect to the analogy from the beginning of this paragraph, 
the difference between equilibrium stability analysis of a material point and 
stability of competitive equilibrium lays in the availability of a satisfying 
theory of the material point movements when it is not in the equilibrium 
position (it moves downwards and dissipating energy makes it converge to 
the lowest point). On the contrary, a satisfying theory for the movement of 
economic values when they are not in a competitive equilibrium does not 
exists. The assumption of the Walrasian auctioneer is only one of the 
reasonable assumptions and it can be substituted with other rational 
assumptions that would determine different stability conditions. In other 
words, we lack a (analytically as well as synthetically) satisfactory theory of 
market behavior out of equilibrium.  

Moreover, with the described behavior, changes in the prices do not 
maintain, in general, a normalization (that is, we have p(t)∈ k

+  and not, for 
example, p(t)∈S 1k− ). A case in which normalization is maintained (with 
p(t)∈{p∈ k

+ : 2
1 1k

h hp= =∑ }) is shown in the next proposition, that is helpful 
to understand how problematic the existence of stable equilibrium is for 

2k >  (even when only one equilibrium exists). 

5 If, for example, prices announced by the auctioneer would come from the system 

of differentiable equations 1d ( )
  λ (D ( ( )))  ( ( ))

d p

p t
E p t E p t

t
−= −





  , where λ > 0, [ 0]E I E=   

and [ 0]p I p=  , then every equilibrium would be (locally) stable (Smale, 1976). In fact, 
this process coincides with the one that in mathematics is called Newton method, that aims 
at determining the solution of a system of equations. Note, on one hand, that price 
adjustment process depends on the excess demands of the other goods (and not only on the 
excess demand of the same good) and, on the other hand, that the auctioneer must know, 
with respect to announced prices, not only excess demand  ( )E p  but also the derivative of 

this function D ( )p E p


 . 
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Proposition 12.9 If market behavior is governed by the system 
d ( ) ( ( ))

d
h

h
p t E p t

t
=  for h = 1,…, k (that is, function fh(.) is the identity 

function for every h = 1,…, k) and p(0)∈{p∈ k
+ : 2

1 1k
h hp= =∑ }, then 

p(t)∈{p∈ k
+ : 2

1 1k
h hp= =∑ } for every t > 0, whatever the function E(p) is.  

Proof. Consider the derivative 2
1

d ( )
d

k
h hp t

t =∑  and apply Walras law. 

We get 2
1 1

d ( )d ( ) 2 ( )
d d

k k h
h hh h

p tp t p t
t t= == =∑ ∑ 12 ( ) ( ( )) 0k

h h hp t E p t= =∑ , that is 

2
1 ( )k

h hp t=∑  is constant for every t ≥ 0, so p(t)∈{p∈ k
+ : 2

1 1k
h hp= =∑ } for 

every t ≥ 0.        � 

In Figures 12.9 and 12.10 we represent trajectories of prices, 
respectively, for k = 2 and k = 3, assuming that the aggregate excess demand 
function E(p) is continuous and satisfies desirability condition and the 
economy is regular. Note that for k = 2 there is always at least one stable 
equilibrium. In fact, the prices move along the circumference arc, towards 
the interior from the end points with a speed equal to excess demand. 
Therefore, since excess demand is a continuous function, there is an odd 
number N of points in which the speed is equal to zero (these are 

equilibrium points) and a number equal to 1

2

N +  of them towards which the 

movement of prices converges (these are stable equilibria). In Figure 12.9 
there are two stable and one unstable equilibria. For k = 3, on the contrary, 
all equilibria can turn out to be unstable. In Figure 12.10 there is not any 
stable equilibrium. 

   

Let’s consider market behavior as assumed before, specifying the 
system of differential equations as 

          d ( ) λ ( ( ))
d
h

h h
p t E p t

t
=  ,                                                        h = 1,…, k−1 

. 
. 
. 

p1 

p2 
1 

1 

Figure 12.9 

S 

I 

S 

p3 

p1 p2 

1 1 

1 

Figure 12.10 
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d ( ) 0
d
kp t
t

=  , 

where λh > 0 for h = 1,…, k−1. The last equation indicates that the 
auctioneer announces always the same price for the k-th good, for example 
pk(t) = 1, ensuring price normalization. This behavior represents the 
dynamics of exchange ratios of all goods with respect to the k-th good. As 
we have already shown, equilibrium (x*, y*, p*) is stable if lim ( ) *

t
p t p

→∞
=  

for the function p(t) that solves this system. 

We can prove that the equilibrium is globally stable if the aggregate 
excess demand function E(p) satisfies the weak axiom of revealed 
preferences or if all the goods are gross substitutes. To prove the first of 
these propositions we employ a mathematical theorem, called second 
method of Lyapunov.  

Second method of Lyapunov. Consider an autonomous system of 
first order differential equations  

d ( ) ( ( ))
d
i

i
y t f y t

t
=  ,                                                                 i = 1,…, n,  

with fi(y*) = 0 for i = 1,…, n, where y(t) = (y1(t),…, yn(t)). Equilibrium y* is 
stable if there exists a function : nV →  , of the type V(y−y*) with 
continuous first order partial derivatives, that satisfies the following three 
conditions: 

             a) V(y−y*) > 0 for every y ≠ y* and V(0) = 0; 
             b) V(y−y*) → + ∞ for y−y*→ + ∞ ; 

    c) d ( ( ) *)
d

V y t y
t
− < 0 for every y ≠ y* and d ( ( ) *)

d
V y t y

t
−  = 0 for y = y*.  

Proposition 12.10 If the aggregate demand function E(p) of a regular 
economy satisfies the desirability condition for all the goods and the weak 
axiom of revealed preferences holds, then equilibrium is globally stable with 
respect to the dynamic process represented by the system of equations 

d ( ) λ ( ( )
d
h

h h
p t E p t

t
= ,                                                          h = 1,…, k−1, 

d ( ) 0
d
kp t
t

= , 

where λh > 0 for h = 1,…, k−1. 
Proof. The weak axiom of revealed preferences requires, as stated in  

Proposition 12.8, that inequalities pE(p′) ≤ 0 and E(p′) ≠ E(p) imply p′E(p) 
> 0. Therefore, if E(p*) = 0, then p*E(p) > 0 for every E(p) ≠ 0. Moreover, 
by Proposition 12.8, there is a unique vector of equilibrium prices in 1kS − , 
which is positive by desirability condition. Then, there is a unique p*∈ k

+ , 
with pk* = 1,  for which E(p*) = 0. Let’s introduce the function V = 

2 21
1

1 ( ( ) *) ( ( ) *)
λ

k
h h h k k

h

p t p p t p−
= − + −∑ . Let’s check whether this function 
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satisfies all three conditions required by the second method of Lyapunov, 
and so it is a Lyapunov function. The first two conditions are immediately 
satisfied. Consider the third condition, apply Walras law and recall that pk(t) 
= pk* = 1. We then get 

1
1

d ( )d 2 ( ( ) *)
d λ d

k h
h h h

h

p tV p t p
t t

−
== − =∑  

1
12 ( ( ) *) ( ( ))k

h h h hp t p E p t−
= − =∑ 12 ( ( ) *) ( ( ))k

h h h hp t p E p t= − =∑ 2 * ( ( ))p E p t− .  

Thus d 0
d
V
t
<  for every E(p) ≠ 0 and d 0

d
V
t
=  if and only if p = p* (keeping 

in mind that we consider only price vectors with pk(t) = pk* = 1). Then by 
the second method of Lyapunov, the dynamic process converges towards p* 
and as a result it is a globally stable equilibrium.  � 

Proposition 12.11 A competitive equilibrium of a regular economy, 
characterized by a continuous and differentiable excess demand function 
that satisfies desirability condition for all the goods and with only goods that 
are, in equilibrium, gross substitutes with respect to the other goods (that is. 
by Definition 12.3, such that D

tp Eh(p*) > 0 for every h,t = 1,…, k with h ≠ t 

and for every p*∈ k
+  with E(p*) = 0) is locally stable with respect to the 

dynamic process represented by the system of differential equations 
d ( ) λ ( ( )

d
h

h h
p t E p t

t
= ,                                                        h = 1,…, k−1, 

d ( ) 0
d
kp t
t

= , 

where λh > 0 for h = 1,…, k−1.  
Proof. Local stability requires that the prices converge towards its 

equilibrium values in the neighborhood of p*. We can, then, linearize the 
system of the examined differential system around p*. Keeping in mind that 
pk(t) = pk* = 1, we get 

d ( ) λ̂ D ( *) ( ( ) *)
d

 p
p t E p p t p

t
= −







  ,  

where [ 0]E I E=  , [ 0]p I p=   and λ̂  is the diagonal matrix with non-
zero elements equal to λh, for h = 1,…, k−1. The solution of this system 
converges (towards *p ) if all the eigenvalues of the matrix λ̂ D ( *) p E p



  
and, consequently, since λh > 0 for every h = 1,…, k−1, of the matrix 
D ( *)p E p


  have a negative real part. A sufficient condition that gives rise to 

this property is that the matrix D ( *)p E p


  has all the elements on the main 
diagonal negative and positive elsewhere and that there exists a vector 
h∈ 1k−

+  for which D ( *)p E p


 h < 0 (Hahn, 1958 and 1982). The first of these 
two requirements is satisfied by the assumption that all the goods are gross 
substitutes. The second one has already been proved with respect to the 
Proposition 12.7. In fact, we have shown that T(D ( *))p E p



 *p  << 0. (Recall 

 18 



that transposition does not change the eigenvalues, that is that the matrices 
D ( *)p E p


  and T(D ( *))p E p


  have the same eigenvalues). Therefore, the 
unique existing equilibrium (by Proposition 12.7) is locally stable (but, for  
k > 2, not necessarily globally). Note that this result holds for any positive 
parameters λh, with h = 1,…, k−1.  �   

 
 
12.4 Equilibrium stability in real time (without tâtonnements) 
 
Equilibrium stability analysis carried out in the preceding paragraph is 

based on the condition that no exchanges or production processes take place 
in the contracting phase. It leads to propositions (like Propositions 12.10 and 
12.11) that ensure stability under very strong conditions. These assumptions 
are a bit weaker if we allow for exchanges and production to take place out 
of equilibrium. Naturally, these actions modify the economy (at least by 
changing agents’ endowments), so eventual convergence is possible towards 
a competitive equilibrium of an economy generally different from the initial 
one.  

In what follows, we will present two possible dynamic processes. In 
the first one (Edgeworth process) the exchanges are made under barter 
(without price formalization); in the second one (Hahn process) the prices 
are equal for all the agents, so out of equilibrium the exchanges are, in 
general, rationed. 

For simplicity, we consider only pure exchange economies (so without 
production) with only durable goods. (In order to get the idea, imagine for 
example an economy of children that exchange football players figures or an 
economy of financiers that exchange securities). Moreover, the exchanges 
modify only the endowments of the agents but not their preferences or their 
number. 

We start from an economy  = ( k
+ , ∈i〉, ωi, i = 1,…, n). Since the 

goods are durable, the exchanges modify the endowments of the agents but 
not the total quantity of the goods. That is, the economy changes with time 
and can be described as (t) = (〈 k

+ , ∈i〉, ωi(t),  i = 1,…, n), with Σ 1
n
i= ωi(t) = 

Σ 1
n
i= ωi(0) = Ω for every t > 0. (In what follows, we assume, as in general in 

Paragraph 12.3, that these economies are regular, all the goods are desirable 
and ωi > 0 for i = 1,…, n, so every agent has a positive endowment of at 
least one good). There is stability if the exchange process leads, when t 
increases, to an allocation (ωi*) 1

n
i=  that is a competitive equilibrium for the 

economy * = (〈 k
+ , ∈i〉, ωi*, i = 1,…, n). 

Edgeworth process. In this process the agents exchange goods if the 
exchange is favorable for each of them. We assume that information system 
is such that it signals the existence of favorable exchanges, so the exchange 
process continues until there are no more possible favorable exchanges. 
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Naturally, there is a multiplicity of possible sequences of exchanges and 
each of them leads, in general, to a different allocation if it converges. We 
will now examine whether all these sequences converge and if each of them 
converges to a competitive equilibrium allocation. 

Proposition 12.12 If agents’ systems of preference are regular, 
continuous, strongly monotonic and strictly convex and the sequence of 
exchanges follows Edgeworth process, then the allocation (ωi(t)) 1

n
i=  of the 

economy (t) = (〈 k
+ , ∈i〉, ωi(t), i = 1,…, n) converges towards a 

competitive equilibrium allocation (ωi*) 1
n
i= . 

Proof. The preferences of each agent are regular and continuous so 
they can be represented with a continuous utility function (Proposition 3.2). 
Moreover, this function is strongly increasing (since the preferences are 
strongly monotonic), bounded from above (since the available quantity of 
the goods is limited) and strictly quasi-concave (since the preferences are 
strictly convex). Moreover, the utility possibility set (Definition 8.6) 

     U = {u∈ n
 : ui = ui(ωi) for i = 1,…, n with Σ 1

n
i= ωi = Ω} 

is non-empty, closed and bounded from above (Proposition 8.4). Every 
Edgeworth process determines a sequence of utility vectors such that u(t′) ≥ 
u(t) for every pair t, t′ with t′ > t, moreover with u(t′) > u(t) if favorable 
exchanges are possible from (ωi(t)) 1

n
i=  and with u(t′) = u(t) if (ωi(t)) 1

n
i=  is 

efficient, i.e. u(t)∈Umax = {u∈U: there does not exist u '∈U such that u '> u}. 
If the process is continuous, that is allocation (ωi(t)) 1

n
i=  is a continuous 

function of t, then function Σ 1
n
i= ui(t) is continuous, bounded from above and 

monotonically non decreasing: in particular, it is increasing if u(t)∈U \ Umax  
and constant if u(t)∈Umax. As a result, there exists a bounded lim

t→∞
Σ 1

n
i= ui(t). 

Therefore, since u(t′) ≥ u(t) for every pair t, t′ with t′ > t, there exists a 
bounded lim

t→∞
u(t) of the utility vector, necessarily with lim

t→∞
u(t)∈Umax. 

Recalling that we have by Definition 8.5 
  Umax = {u∈U: ui = ui(ωi) for i = 1,…, n with Σ 1

n
i= ωi = Ω and (ωi) 1

n
i= ∈PO}  

we get that lim
t→∞

(ωi(t)) 1
n
i=  is an efficient allocation (there is a unique 

allocation since strict convexity of preferences prevents us from having two 
allocations equally preferred by all the agents). Finally, since Edgeworth 
process determines the convergence towards an efficient allocation, we get 
that this allocation is a competitive equilibrium allocation by the second 
welfare theorem .   � 

In Figures 12.11 and 12.12, for an economy with two agents and two 
goods, we show a possible path that follows Edgeworth process, 
respectively, in Edgeworth-Pareto box diagram and in utility space. 
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Hahn process. This process is different from the process directed by 
the Walrasian auctioneer described in Paragraph 12.3 only because there are 
exchanges even if the prices announced by auctioneer do not form an 
equilibrium. Auctioneer raises prices of the goods that have positive 
aggregate excess demand and reduces the prices of goods with negative 
aggregate excess demand. The presence of auctioneer assures that prices are 
equal for all the agents. The agents form their demand and supply with 
respect to those announcements.6 Out of equilibrium, aggregate excess 
demands are not equal to zero, so not all the asked exchanges can be 
executed. Therefore, it is necessary to specify which of the exchanges are 
realized, in other words, we need to come up with an exchange rationing 
scheme. In what follows we adopt the following assumption: for every good 
for which aggregate excess demand is positive (that is, demand exceeds 
supply), agents with non positive excess demand sell the desired quantity of 
good, while those with positive excess demand are rationed. They buy less 
than desired of the good, such that the sum of the total quantity bought is 
equal to the total supply from the sellers. By analogy, for every good with 
negative excess demand. We will now examine whether the sequence of 
exchanges determined by such rationing converges and if it converges to a 
competitive equilibrium allocation. 

Proposition 12.13 If the systems of preferences of the agents are 
regular, continuous, strongly monotone and strictly convex, the auctioneer 
announces positive prices for all goods (keeping in mind that the goods are 
desirable) and the sequence of exchanges follows Hahn process, then the 

6 In what follows, we assume that agents form their demand and supply without 
realizing that they may be rationed. This simplifies analysis, but is in conflict with 
rationality of agents. In fact, if an agent realizes that a certain good will be rationed (so he 
will be able to, for example, buy only half of what he asks) he may want to demand a 
quantity higher than desired (for example doubled) in order to get a quantity close to the 
desired one (on this point and other aspects, see Fisher, 1983). For the equilibrium stability 
in general, see Hahn (1982). 

Figure 12.11 

O1 

O2 

ω(0) 

ω* 

Figure 12.12 

u1 

u2 

u1(0) u1* 

u2(0) 

u2* 

U 

Umax 
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allocation (ωi(t)) 1
n
i=  of the economy (t) = (〈 k

+ , ∈i〉, ωi(t), i = 1,…, n) 
converges towards a competitive equilibrium allocation (ωi*) 1

n
i= . 

Proof. With the indicated assumptions, every agent in economy (t) 
has a demand function dih(t) = dih(p(t), p(t)ωi(t)) that is continuous (if  
p(t)ωi(t) > 0) for every good h = 1,…, k, with di(t) > 0. Aggregate demand 
function for the h-th good is Eh(t) = Σ 1

n
i= dih(p(t), p(t)ωi(t)) − Ωh. If  Eh(t) = 0, 

then none of the agents is rationed with respect to the h-th good, so we have  
ωih(t) = dih(t) for every i∈N. The auctioneer does not change the price of this 

good, that is d ( )
d
hp t
t

 = 0. If Eh(t) > 0, the set of agents N is divided into two 

subsets: subset ( )nr
hI t  of the non rationed agents (those with non positive 

excess demand) and the subset ( )r
hI t  of rationed agents (those with positive 

excess demand). We then get ωih(t) = dih(t) for every i∈ ( )nr
hI t  and ωih(t) < 

dih(t) for every i∈ ( )r
hI t . The auctioneer raises the price of this good, that is 

d ( )
d
hp t
t

 > 0. Analogously, if Eh(t) < 0, the set of agents N is divided into two 

subsets: subset ( )nr
hI t  of non rationed agents (those with non negative 

excess demand) and subset ( )r
hI t  of rationed agents (those with negative 

excess demand). We then have ωih(t) = dih(t) for every i∈ ( )nr
hI t  and ωih(t) > 

dih(t) for every i∈ ( )r
hI t . Auctioneer lowers the price of this good, that is 

d ( )
d
hp t
t

 < 0. Note that in each case, with or without rationing, we must have 

Σ 1
k
h= ph(t)

d ( )
d
ih t
t

ω  = 0 for every i∈N, because the exchange leaves the value 

of the endowment unchanged. Note, moreover, that all the agents (rationed 
or not) are never harmed by the exchange, that is ui(ωi(t)) is a non 
decreasing function of t. Therefore, since ωi(0) > 0, and also ωi(t) > 0 for 
every t > 0 we get p(t)ωi(t) > 0 (in this way we are certain that every agent 
always has a continuous excess demand function). However, while the 
direct utility function is a non decreasing function of t, the opposite happens 
for the indirect utility function ui*(p(t), p(t)ωi(t)), which is, as we will see 
soon, a non increasing function of t. In fact, we get 

1 1
d *( ) * d ( ) * d ( ) d ( )( ( ) ( ) )

d ( ) d ( ( ) ( )) d d
k ki i h i h ih
h h ih h

h i

u t u p t u p t tt p t
t p t t p t t t t= =

∂ ∂ ω
= + ω +∑ ∑

∂ ∂ ω
 

Therefore, keeping in mind, on one hand, that Σ 1
k
h= ph(t)

d ( )
d
ih t
t

ω  = 0 and, on 

the other hand, of Antonelli-Roy relationship (Proposition 3.13) according 
to which  

                                    * *( )
( ) ( ( ) ( ))
i i

ih
h i

u ud t
p t p t t
∂ ∂

= −
∂ ∂ ω

, 
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we get 

1
d *( ) * d ( )( ( ) ( ))

d ( ( ) ( )) d
ki i h
h ih ih

i

u t u p td t t
t p t t t=

∂
= − −ω∑

∂ ω
. 

Since * 0
( ( ) ( ))

i

i

u
p t t
∂

>
∂ ω

 and d ( )( ( ) ( )) 0
d
h

ih ih
p td t t

t
−ω ≥  (in particular, if an 

agent is not rationed for the h-th good then ( )ih tω  = ( )ihd t , if he is rationed 

and Eh(t) > 0 then ωih(t) < dih(t) and d ( )
d
hp t
t

> 0, and if he is rationed and 

Eh(t) < 0 then ωih(t) > dih(t) and d ( )
d
hp t
t

< 0), we get d *( ) 0
d
iu t

t
≤ , with 

d *( ) 0
d
iu t

t
<  if the i-th agent is rationed for some good and d *( ) 0

d
iu t

t
=  if he 

is not rationed for any good. As a consequence, function Σ 1
n
i= ui*(t) is 

continuous and monotonically non increasing: in particular it is decreasing 
if some good is not in equilibrium and it is constant if all the goods are in 
equilibrium. Moreover, this function is bounded from below (to account for 
this, it is enough to choose utility functions such that ui(0) = 0 for every i = 
1,…, n, and note that it must be that ui*(t) ≥ 0 for every t). Consequently, 

lim
t→∞

Σ 1
n
i=

d *( ) 0
d
iu t

t
= . Therefore, for every i = 1,…, n, since d *( )

d
iu t

t
 ≤ 0 we 

get lim
t→∞

d *( ) 0
d
iu t

t
= , so the economy converges towards a situation without 

rationing, that is towards a competitive equilibrium.  � 
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In Figure 12.13 we illustrate how rationing reduces indirect utility 
(while direct utility increases) in an economy with two goods. 

 
 
12.5 Comparative statics of general competitive equilibrium 
 
Comparative statics analysis of competitive equilibrium (introduced in 

Paragraph 10.4 for partial equilibrium) studies the relationship between 
equilibria of different economies, that is the dependence of an equilibrium 
on the data of the economy. In the examined case, how a change in 
preferences, technology or quantity of available resources modifies the 
equilibrium represented by prices and allocation of goods. 

Let the competitive equilibrium be determined by the following 
conditions: xi∈di(p; mi), yj∈sj(p) and 1 1 1ωn n m

i i ji i jx y= = =≤ +∑ ∑ ∑ , where mi = 

pωi+ 1θ π *m
j ij j=∑ , with π * max

j j
j jy Y

py
∈

= , di(p; mi) = 
{ : }

arg max ( )
i i i i i

i ix x X px m
u x

∈ ∈ ≤
 and 

sj(p) = arg max
j j

jy Y
py

∈
, for i = 1,…, n and j = 1,…, m. Equilibrium allocation 

and prices (x*, y*, p*) (where x* = (xi*) 1
n
i=  and y* = (yj*) 1

m
j= ) turn out to 

depend on functions ui(.), endowments (ωi, θij ) and sets Yj, with i = 1,…, n 
and j = 1,…, m. If we represent these data by a vector of parameters α = 
(α1,…, αt), then the competitive equilibrium (x*, y*, p*) is a function of  α. 
We analyze this function to get comparative statics for general competitive 
equilibrium. 

The comparison can either look at discrete changes in parameters 
αb−αa or continuous changes dα. If there are many equilibria, then global 
comparative statics analysis (that is, the one that examines the effects of 
discrete changes in parameters) is not very significant: we get the change of 
the set of equilibria. On the contrary, local analysis (that is the one that 
examines the effects of infinitesimal changes in parameters) is significant 
when equilibria are isolated (i.e., if the economy is regular), with notice that 
static analysis considers an infinitesimal change of the equilibrium. The 

derivative β
α
∂
∂

, where β is a variable and α is a given, represents the change 

in the neighborhood of a single generic equilibrium.  

Suppose that we are interested in studying comparative statics of 
equilibrium prices highlighting their dependence on a vector α of data. 
Since prices are determined by condition E(p; α) = 0 (because the aggregate 
excess demand function is single-valued and desirability conditions are 
satisfied), or better, as shown in Paragraph 12.1 (right after Definition 12.1) 
by the system of k−1 equations ( ; ) 0E p = α , we get, differentiating these 
equations,  

                  1D *( ) (D ( ; )) D ( ; )pp E p E p−= −


 

α αα α α . 
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In what follows, we examine the dependence of prices on quantity of 
resources. This analysis intends whether the competitive equilibrium prices 
are indices of relative scarcity. In other words, whether an increase of 
available quantity of one good, when the quantity of the other goods 
remains unchanged, reduces its relative price (that is, the ratios between the 
price of the good under examination and the prices of the other goods).7  

If there are no free goods and excess demand functions are single-
valued, then the competitive equilibrium of economy  = (〈Xi, ∈i〉, Yj, ωi, θij, 
i = 1,…,n, j = 1,…,m) with free disposal is determined by condition 

( *, ) 0E p ω =  (where dependence on the quantity of resources ω = 
(ω11,…,ω1k,…,ωn1,…,ωnk)∈ nk

++  is highlighted), with ( , )E p ω =  

1 1( ( , ) ω ) ( )n m
i ji i i jd p m s p= =− −∑ ∑ , where 1ω θ ( )m

ji i ij jm p ps p== + ∑ . If 
aggregate excess demand function E(p; ω) is differentiable with respect to 
both prices and quantity of resources, local comparative statics analysis is 
represented by the derivatives of equilibrium exchange ratios with respect to 
quantity of resources. That is, its purpose is to determine the derivatives 

*
*

h

s

ir

p
p

∂

∂ω
, for i = 1,…, n and h,s,r = 1,…, k with h ≠ s, from the equilibrium 

condition E(p*; ω) = 0. 

We now need to extend the definitions of gross substitutes, introduced 
in Chapter 3 (Definition 3.5 and 10.3), and of normal goods (Definition 3.6). 

Definition 12.4 (Normal goods and gross substitutes for aggregate 

excess demand function) The h-th good is normal if ( ;ω) 0
ω

h

ir

E p∂
>

∂
 for every 

pair i,r, with r ≠ h, r = 1,…, k and i = 1,…, n; the h-th good is gross 
substitute with respect to the t-th good, with h,t = 1,…, k and h ≠ t, if 

( ;ω) 0h

t

E p
p

∂
>

∂
. 

With respect to normal goods, Walras law requires pE(p;ω) = 0, so 

1
( ;ω) 0
ω

k h
h h

ir

E pp=
∂

=∑
∂

 for i = 1,…, n and r = 1,…, k. Then, if ( ;ω) 0
ω

h

ir

E p∂
>

∂
 

for every r ≠ h, we get ( ;ω) 0
ω

h

ih

E p∂
<

∂
 and 1,

( ;ω) 0
ω

k h
h h s h

ir

E pp= ≠
∂

<∑
∂

 for r ≠ s, 

i = 1,…, n and h = 1,…, k, since 1,
( ;ω) ( ;ω) 0
ω ω

k h s
h h s h s

ir ir

E p E pp p= ≠
∂ ∂

+ =∑
∂ ∂

 and 

( ;ω) 0
ω

s

ir

E p∂
>

∂
. Moreover, since the excess demand functions are 

7 More extensive comparative statics analysis can be found in Montesano (1993). 
The relation between scarcity and prices is discussed in Montesano (1995). 
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homogenous of degree zero with respect to prices (that is, E(αp;ω) = E(p;ω) 

for every α > 0), we get for every α > 0 that (α ;ω) ( ;ω) 0
ω ω

h h

ir ir

E p E p∂ ∂
= >

∂ ∂
 for 

h r≠  if the good is normal. Then, since E(p;ω) = 
1( ( , ) ω )n

i i i id p m= − −∑ 1 ( )m
j js p=∑ , where im = 1ω θ ( )m

ji ij jp ps p=+ ∑  and there 
are no free goods (so pr > 0), the h-th good, if it is normal for all the 

consumers according to Definition 3.6, that is if ( , ) 0ih i

i

d p m
m

∂
>

∂
 for every i 

= 1,…, n, then it is also normal according to the definition 12.4. In fact, we 

get ( ;ω)
ω

h

ir

E p∂
=

∂
( , ) 0ih i

r
i

d p m p
m

∂
>

∂
 for h r≠ .  

With respect to gross substitutability, Walras law requires pE(p;ω) = 0, 

so 1
( ;ω)k h

h h
t

E pp
p=

∂
+∑

∂ 1( ; (ω ) ) 0n
t i iE p = = . Then, in equilibrium we get 

1 *D ( *;ω) 0k
h h htpp E p= =∑  because ( *;ω) 0tE p = . Then, the h-th good, if it 

is gross substitute with respect to the other goods, that is D ( *;ω) 0htp E p >  
for every t ≠ h, is also an ordinary good, that is D ( *;ω) 0hhp E p < . By the 
homogeneity of degree zero of the excess demand functions we get 

αD (α *;ω)htp E p = 1α D ( *;ω)htp E p−  for every α > 0, so D ( *;ω) 0htp E p >   
if and only if αD (α *;ω) 0htp E p >  and αD (α *;ω) 0htp E p >  for every t ≠ h 
implies αD (α *;ω) 0hhp E p < . Finally, leaving aside the derivatives D ( )p js p  
(absent if we consider a pure exchange economy), the h-th good, if it is 
normal for all the consumers according to Definition 3.6 and is a gross 
substitute for all the consumers with respect to the t-th good according to 
Definition 3.5, is also a gross substitute with respect to the t-th good 

according to Definition 12.4. In fact, we get ( ;ω)h

t

E p
p

∂
∂ 1

( , )(n ih i
i

t

d p m
p=

∂
= +∑

∂
 

( , ) ω ) 0ih i
it

i

d p m
m

∂
>

∂
 for every t = 1,…, k with t ≠ h.  

Now, we are ready to introduce a following proposition. 

Proposition 12.14 Competitive equilibrium prices are indices of 
relative scarcity if all the goods are gross substitutes and normal (according 
to Definition 12.4), that is, the exchange ratios determined by the 

equilibrium condition E(p*; 1(ω )n
i i= ) = 0 have derivatives * *h s

ih

p p∂
∂ω

 < 0, for 

every i = 1,…, n and h,s = 1,…, k with h ≠ s. 
Proof. Condition E(p*; 1(ω )n

i i= ) = 0 determines equilibrium exchange 
ratios only if the Jacobian matrix of function E(p; 1(ω )n

i i= ) with respect to the 
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prices, evaluated at equilibrium prices, that is matrix DpE(p*; 1(ω )n
i i= ), is of 

rank k−1. It cannot be of rank equal to k because Walras law, according to 
which pE(p; 1(ω )n

i i= ) = 0, implies that aggregate excess functions are linearly 
dependent. Proposition 12.5 indicates that the property according to which 
the rank is equal to k−1 holds generically, that is for almost every 

1(ω ) 0n
i i= >> . For every given s-th good we consider equilibrium conditions 

of the other goods Eh(p*; 1(ω )n
i i= ) = 0, where h = 1,…, k with h ≠ s, and 

denote with E  and p   the vectors, with k−1 components, (Eh) and (
*

h

s

p
p

), 

where h = 1,…, k with h ≠ s. Now, recalling that excess demand functions 
are homogenous of degree zero with respect to prices, we get the exchange 
ratios p * as a function of resources 1(ω )n

i i=  from equilibrium condition 

1( * ;(ω ) ) 0n
i iE p = =

 . 
Deriving this condition with respect to ωir , we get the relationship 

ω ωD D D 0*
ir irp E p E+ =



 

  

(where, for simplicity of notation, symbols D p E


  and ωD
ir
E  respectively 

denote 1D ( *;(ω ) )n
p i iE p =



  and ω 1D ( *;( ) )
ir

n
i iE p =

 ω ), from which we get 

ω ω
1D * (D ) D

ir irpp E E−= −


 

  

where D p E


 is a full rank (k−1)×(k−1) Jacobian matrix and 1(D )p E −


  is its 

inverse and ωD
ir
E  is the vector of the derivatives of 1( *;(ω )n

i iE p =


 ) with 
respect to ωir. This relationship can be written as 

1 1
ω

ˆ ˆD *
ir irp P B G z− −= −  

where P̂  is a diagonal matrix of the same elements p *; B̂  is a diagonal 
matrix composed of the main diagonal of the matrix D p E



 , that is with 

elements D * D
h hp h s p hE p E=


 , where h = 1,…, k and h ≠ s;  
11ˆ ˆ ˆ(D )pG BP E P−−=



 ; and irz = P̂ ωD
ir
E . The elements on the main diagonal 

of matrix P̂  are all positive because there are no free goods and those of 
matrix B̂  are all negative because the goods are gross substitutes. The 

vector irz  is composed of ,h irz =
* *
* ω * ω

h h h h

s ir s ir

p E p E
p p

∂ ∂
=

∂ ∂



 with h = 1,…, k and  

h ≠ s, that are positive for h ≠ r and negative for h = r, because the goods are 

normal (for simplicity of notation symbol 
ω

h

ir

E∂
∂

 denotes 1( *;(ω ) )
ω

n
h i i

ir

E p =∂
∂

 

and D
tp hE  denotes 1D ( *;(ω ) )

t

n
p h i iE p = ). Matrix  F = G −1 = P̂ D p E





1 1ˆ ˆP B− −  

is composed of  fht = 
D*

* D
t

t

p hh

t p t

Ep
p E

, so assumption that goods are gross 
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substitutes requires ftt = 1 and fht < 0 for h ≠ t, with 1 0k
h htf= =∑ , 

1, 1k
h h t htf= ≠ = −∑  and 1, , 1k

h h t s htf= ≠ > −∑ . Then, matrix A I F= −  is 
semipositive, with elements aht such that 1, , 1, , 1k k

h h t s h h t sht hta f= ≠ = ≠= − <∑ ∑ . 
Therefore, we apply Metzler theorem (1951) according to which matrix 

1 1( )G F I A− −= = −  is positive with elements ghh > ght > 0 for h ≠ t and h,t = 
1,…, k, with h,t ≠ s. Therefore, since 1 1

ω * ˆ ˆD
ir irp P B G z− −= −  and 

consequently 1, ,

*
* 1

ω *D
h

h

ks
t t s ht t ir

ir h p h

p
p g z

p E = ≠

∂
= − ∑

∂
 for h ≠ s and h = 1,…, k, 

setting r = h,  we get 

1, , 1,, , ,

*
* 1 ( ) 0

ω *D *D
h h

h

k ks hh
t t h s t t shh h ih ht t ih t ih

ih h p h h p h

p
p gg z g z z

p E p E= ≠ = ≠

∂
= − + < − <∑ ∑

∂

since D 0
hp hE < , ghh > ght > 0 for t ≠ h and ,t ihz *

* ω
t t

s ih

p E
p

∂
=

∂
 > 0 for t ≠ h and 

< 0 for t = h, with 1, 1,,
1 * 0

* ω
k k t
t t s t t st ih t

s ih

Ez p
p= ≠ = ≠

∂
= <∑ ∑

∂
. Moreover, setting 

r s= , we get 

1, ,

*
* 1 0

ω *D
h

h

ks
t t s ht t is

is h p h

p
p g z

p E = ≠

∂
= − >∑

∂
 

since D 0
hp hE < , ght > 0 for t ≠ h and ,t isz *

* ω
t t

s ih

p E
p

∂
=

∂
 > 0 for t ≠ s.    � 

The assumptions in Proposition 12.14 are particularly strong, even 
though they are only sufficient conditions. Thus, it is possible to show 
examples, with not all the goods normal and gross substitutes, where the 
competitive prices are not indices of relative scarcity.  
Therefore, the statement (sometimes called a fundament of neoclassical 
theory) that competitive equilibrium prices are indices of scarcity, that is 
higher scarcity of a good implies ceteris paribus higher price, has no 
absolute value. 

 An interesting proposition looks at comparative statics of the social 

welfare function W = 1
1 ( )
λ

n
i i i

i

u x=Σ  that is maximized by competitive 

equilibrium allocation (as shown in Proposition 11.16). We will now 
examine how social welfare, defined by this function, varies with changes in 

the quantity of resources. Since W*((ωi) 1
n
i= ) = 1( , )

1max ( )
FD

n
i i ix y C

i

u x=∈
Σ

λ
 = 
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, where (x*, y*, p*) is a competitive 

equilibrium of  = (〈Xi, ∈i〉, Yj, ωi, θij, i = 1,…, n, j = 1,…, m), we need to 
determine derivatives D *(( ))

ih iWω ω  in order to show how social welfare 

(represented by function 1
1 ( )
λ

n
i i i

i

u x=Σ ) varies when the quantity of resources 

changes. 

Proposition 12.15 With respect to the social welfare function W =  

1
1 ( )
λ

n
i i i

i

u x=Σ , the change in social welfare determined by a change in the 

resources quantity is proportional to competitive equilibrium prices, that is 
D *(( ))

ih iWω ω  =  ph* for every h = 1,…, k and i = 1,…, n.  
Proof. This proposition is a direct consequence of Proposition 8.11 

and its comment. It is enough to realize that marginal rate of substitution 
among two goods on the curve of minimal resources to achieve utility u* is 
equal to its price ratio in competitive equilibrium and that social welfare is 
expressed in the same accounting unit as prices.  � 

Proposition 12.15 states for the whole economy the Gossen-Menger 
loss principle, according to which the price (or value of a good) is equal to 
its marginal utility (which here is the derivative of the indirect social welfare 
function).  

 
 
12.6 The core of an economy  
 
Competitive equilibrium requires that agents base their choices on 

prices and that they are price-takers. Nevertheless, competitive equilibrium 
allocations are not only the result of this particular market regime, but are 
also a reflection of much stronger forces determined by the interaction 
among the agents, when they are very numerous. Core analysis sheds light 
on it.  

Imagine an environment in which agents can exchange goods among 
themselves without constraints (only the agreement among the parties is 
necessary), that is without introducing a specific structure for exchange (like 
the one of competitive equilibrium, in which prices are equal for all agents). 
The result are exchanges (so allocations) with respect to which there is no 
possibility of improvement. Normally there are many allocations that have 
this property. Nevertheless, under very general conditions, these allocations 
not only include but also tend to coincide with competitive equilibrium 
allocation as the number of the agents increases. In other words, competitive 
equilibrium allocations are fundamental allocations for the economies 
composed of a large number of agents with freedom of exchange and 
production. 
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In the next part of this paragraph we will consider an economy (with 
free disposal)  = (〈Xi, ∈i〉, Y, ωi, i∈N = {1, …, n}). We assume to have, for 
every i∈N, an endowment ωi∈ k

+ , a consumption set Xi = k
+  and a system 

of preferences 〈Xi, ∈i〉 that is regular, continuous, strictly convex and 
strongly monotonic. The production set  Y ⊆ k

  (with k Y+− ⊆  by free 
disposal) has constant returns to scale and can be adopted by all 
consumers.8 (We have a pure exchange economy if  kY += − ). 

In order to continue the analysis, it is useful to introduce the following 
definitions. 

Definition 12.5 (Coalition) A coalition is formed by a group of 
consumers. Every S ⊆ N, where N = {1, …, n}, is a coalition. 

Definition 12.6 (Improvement upon an allocation) A coalition can 
improve upon (or block) an allocation, if there are consumptions, feasible 
with the endowments of its members and with production set Y, preferred by 
all the consumers in the coalition to the consumptions of the examined 
allocation. Formally, a coalition S ⊆ N can improve upon an allocation 
(xi)i∈N , if there are consumptions (xi′)i∈S such that 

                               xi′ i  xi    for every  i∈S 
                               Σi∈S  xi′ ∈ Y + {Σi∈S  ωi} 
Definition 12.7 (Core of an economy) The core of an economy is the 

set of all the allocations that cannot be improved upon by any coalition. 
Then, x*∈core() if, for every coalition S ⊆ N, xi′ i  xi* for every i∈S 
implies Σi∈S xi′ ∉ Y + {Σi∈S ωi}.  

The representation of a pure exchange economy with two goods and 
two consumers by means of Edgeworth-Pareto box diagram, introduced in 
Paragraph 8.3, allows us not only to determine the core of this economy but 
also illustrate some of its properties that can be generalized. As shown in 
Figure 12.14, the core (sometimes called contract curve) is that part of the 
efficient allocations curve which is enclosed between the indifference 
curves going through the endowment. In fact, inefficient allocations can be 
improved upon by coalition {1, 2}; those on the south west of the 
indifference curve of the first consumer going through ω1 could be 
improved by coalition {1}; and those on the north east of the indifference 
curve passing through ω2 could be improved upon by coalition {2}. 

8 Excluding the possibility of production with increasing returns to scale, 
incompatible with competitive equilibrium which is confronted here with the core, the 
assumption that Y has constant returns to scale reflects the assumption that consumers have 
complete information about their exchange and production possibilities and are free to 
choose them. This implies that if y∈Y then also λy∈Y, for every non negative integer λ: 
constant returns to scale require that it holds also for every non negative real λ. 
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From Figure 12.14 we see that, on one hand, the core is composed of 
efficient allocations and, on the other hand, that every competitive 
equilibrium allocation belongs to core. In other terms, the core is a set that is 
included in the set of efficient allocations and includes the competitive 
equilibrium allocations. These two properties hold also for economies with 
more than two goods and two consumers, as shown in the following 
propositions. 

Proposition 12.16 Every allocation that belongs to the core is 
efficient.9 

Proof. We can easily prove an equivalent proposition according to 
which every feasible allocation that is not efficient does not belong to core. 
In fact, an allocation that is feasible and not efficient can be improved upon 
by coalition S = N formed by all the consumers.   � 

Proposition 12.17 Every competitive equilibrium allocation belongs 
to the core. 

Proof. With analogy to Proposition 11.12 (the first welfare theorem), 
we prove an equivalent proposition according to which an allocation cannot 
belong to a competitive equilibrium of an economy if it does not belong to 
its core. If an allocation (xi)i∈N does not belong to the core, then there exists 
a coalition S ⊆ N that can improve upon this allocation. That is there exist a 
(xi′)i∈S and a y ′∈Y such that xi′ i  xi for every i∈S and Σi∈S xi′ ≤ y ′+ Σi∈Sωi. 
As a consequence, for every competitive equilibrium vector of prices 

* kp +∈ , not only Σi∈S p*xi′ ≤ p*y ′+Σi∈S p*ωi but also Σi∈S p*xi′ ≤ Σi∈S p*ωi  

9 We do not distinguish between weakly and strongly efficient allocations because, 
since the preferences are continuous and strongly monotone, every allocation that is weakly 
efficient is also strongly efficient (as shown in Proposition 8.3). 

O1 x11 

x12 

x22 

x21 O2 

Ω1 

Ω2 

Figure 12.14 

PO 

ω 

 

 
core 

x* 

 31 

                                                 



(recalling that p*y ′≤ max
y Y∈

p*y = 0  by the assumption of constant returns to 

scale). Then, there is a i∈S for which p*xi′ ≤ p*ωi. Therefore, since xi′ i  xi, 
we get that xi is not a preferred consumption in the budget set, that is 
xi∉di(p*). Thus, allocation (xi)i∈N cannot belong to a competitive 
equilibrium.   � 

Proposition 12.17 is a significant extension of the first welfare 
theorem (introduced in Proposition 11.12), in the sense that a competitive 
equilibrium allocation cannot be improved upon not only unanimously but 
also by single consumers or groups of consumers, that is none of the 
consumers or group of the consumers would like to form a separate 
economy in order to achieve preferred consumptions. In other words, 
competitive equilibrium is robust also with respect to deviations of one 
consumer or a group of consumers. 

The core depends on the possibility of forming coalitions. The more 
coalitions can be formed, the higher number of allocations is eliminated 
from the core. In this sense the core shrinks with an increase in the number 
of the possible coalitions. Having considered every subset of N as a possible 
coalition, it is an increase in the number of consumers n that gives rise to 
increase in the number of possible coalitions. Nevertheless, with an increase 
in n, also the geometric dimensions of the core increase. In fact, the core of 
an economy is a subset of the set of efficient allocation of which, in general, 
it has the same geometric dimensions, that are equal to n−1 (as shown at the 
end of Paragraph 8.2). Then, with an increase in n, on one hand, the core 
becomes a set with more dimensions, while, on the other hand, it is 
shrinking because of the increasing number of possible coalitions. In order 
to analyze this shrinking when n increases, we have to refer to a projection 
of core on a space with constant dimensions. This is obtained by introducing 
the notion of replica of an economy.  

Let’s imagine an economy in which the number of consumers is 
increased by duplication. That is new consumers that have the same 
preferences and endowments as existing consumers are added. Then, we can 
define the type of a consumer, characterized by a system of preferences and 
an endowment, such that the consumers of the same type have all the same 
preferences and endowment. In a replica economy the number of the 
consumers is increased by increasing the number of consumers of every 
type while leaving the number of the types unchanged. Then, if there are t 
types of consumers, denoting with T the set of types, the generic type of 
consumer is defined by (〈Xj, ∈j〉, ωj), where j∈T = {1, …, t}. In the r-th 
replica of the economy there are r consumers of any type, so the total 
number of consumers is n tr= . 

For a replica economy introduced in this way the following 
proposition holds, according to which all the consumers of the same type 
have the same consumption in every allocation belonging to the core. This 
allows us to analyze the effect of increase in r on the core observing the 
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projection of the core on the space of the type consumptions (where the 
consumption of the types of consumers are represented, so with only one 
consumer for each type). Then, denoting with q∈R = {1, …, r} the q-th 
cohort of consumers, the following proposition holds. 

Proposition 12.18 In every allocation belonging to the core all the 
consumers of the same type are treated in the same way. That is, for every 
allocation (xjq)j∈T, q∈R (where xjq is the consumption of the j-th type 
belonging to the q-th cohort) in the core of the r-th replica economy, we 
have xjq = xjq′ for every pair q,q′∈R and for every j∈T. 

Proof. We prove that every allocation for which the equal treatment 
property does not hold, does not belong to the core. Then we consider 
whatever allocation in which there is, for every type, a consumer that is 
treated not better than any other consumer of the same type and, for at least 
one type, there is a consumer that is treated worse than any other consumer 
of the same type. Setting, without loss of generality, all those agents in the 
r-th cohort, we have xjr j xjq for every pair with j∈T and q∈R and xj′r j′ xj′q′ 

for at least one pair with j′∈T and q′∈R. Denoting with jx  = 1
r
Σq∈R xjq  the 

average consumption of j-th type agents, by convexity of preferences we get 
that xjr j jx  for every j∈T and xj′r j′ 'jx  for at least one j′∈T. However, the 
coalition formed by all the consumers of the r-th cohort can let each  
consumer receive the average consumption of his type because it has the 
quantity Σj∈T ωj of goods and can use technology Y. In fact, since allocation 
(xjq)j∈T, q∈R is feasible, we have Σj∈T Σq∈R xjq = r Σj∈T jx  = y + r Σj∈T ωj, 

where y∈Y. Therefore, since 1
r

y∈Y  because Y has constant returns to scale, 

we have Σj∈T jx ∈Y+{Σj∈T ωj}, so it is possible for the coalition of all the r-
th cohort consumers to assign to each type his average consumption. 
Moreover, it is possible to assign to each type a consumption preferred to 
the one of the examined allocation (xjr)j∈T. In fact, by continuity of 
preferences, there exists an ε ≠ 0, with  ε∈ k

+ , for which 'jx −ε j′ xj′r and 

by strong monotonicity of preferences jx + 1
1t −
ε j jx  ∈ j xjr for every j ≠ j′. 

As a result, all the consumers of the same type have, in every allocation in 
the core, indifferent consumptions, that is xjq ∼j xjq′ for every j∈T and every 
pair q,q′∈R. In order to prove that they are not only indifferent but also 
equal, that is xjq = xjq′ for every j∈T and every pair q,q′∈R, we consider an 
allocation in which there is a pair of consumers of the same type for whom 
xjq ≠ xjq′ and xjq ∼j xjq′. This allocation is not efficient: the situation of this 
pair of consumers can be improved without making anybody worse off since 
1

2
(xjq + xjq′) j xjq ∼j xjq′. So by Proposition 12.16 every allocation (xjq)j∈T, q∈R 

with xjq ≠ xjq′ for some j∈T and q,q′∈R does not belong to the core.    � 
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The fact that all the consumers of the same type have the same 
consumption, if the allocation belongs to the core, allows us to analyze how 
the core changes when replica r increases considering only the types of the 
consumers and not all of them. It is possible to examine only allocations 
(xj)j∈T of types (remembering that in the core we have xjq = xj for every q∈R 
and j∈T). We denote with Cr() the projection of the core() on the 
allocations space of types when the number of consumers is n = tr. We get, 
on the one hand, that Cr() ⊆ Cr−1() (because every allocation of the types 
that does not belong Cr−1() does not belong also to Cr(), since the 
coalitions available for replica r−1 are also available for replica r) and, on 
the other hand, we get by Proposition 12.17 that competitive equilibrium 
allocations belong to Cr() for every value of r (because they belong to the 
core() for every value of n). The following proposition proves that with 
increases in r every allocation that is not a competitive equilibrium 
allocation is excluded from Cr(), that is core() converges, with increases 
in r, towards the set of competitive equilibrium allocations. 

Proposition 12.19 If an allocation (xj)j∈T is not a competitive 
equilibrium allocation, then there exists sufficiently large replica r such that 
(xj)j∈T ∉Cr(). 

Proof. This proposition is proved, assuming, apart from what has 
already been indicated in the beginning of this paragraph, that xj >> 0 for 
every j∈T and that the preferences of the consumers can be represented with 
differentiable utility functions. If (xj)j∈T is not a feasible allocation or when 
it is feasible but not efficient, then, by Proposition 12.16, it does not belong 
to Cr() whatever the value of r is. So let’s consider an efficient allocation 
(xj)j∈T belonging to Cr() for some r (that is, (xjq)j∈T, q∈R is an efficient 
allocation belonging to the core, so with xjq = xj for every q∈R and j∈T). 
Since it is efficient, by second welfare theorem (Proposition 11.8) there 
exists a competitive equilibrium ((xj)j∈T, y, p) for endowments (ωj′)j∈T = 
(xj)j∈T (recall that py = 0, that is the profit is zero in competitive equilibrium 
because the production set Y has constant returns to scale). If ((xj)j∈T, y, p)  
is not a competitive equilibrium for endowments (ωj)j∈T , then (recalling that 
py = 0) we cannot have pxj ≤ pωj for every j, so there is at least one 
consumer, denoted with t, for whom pωt′ = pxt > pωt. Let’s consider the 
coalition formed by all the consumers except for the r-th consumer of type t. 
This coalition can distribute to its members the quantity of goods 

j T j ty r ∈+ Σ ω −ω , for example assigning  xjq′ = xj +
1

1 ( 1)r r t− + −
(xt − ωt). In 

fact, Σj∈T\{t}Σq∈Rxjq′+Σq∈R\{r}xtq′ = rΣj∈T\{t}xj+
( 1)

1 ( 1)
r t

r r t
−

− + −
(xt−ωt) + (r−1)xt + 

1
1 ( 1)

r
r r t

−
− + −

(xt−ωt) =  rΣ j∈T xj − ωt = y + rΣj∈T ωj − ωt . At this point, we 

need to prove that xjq′ j  xj  for every j∈T and for every sufficiently large r. 
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In other words, if the economy is composed of many consumers this 
coalition can block a non competitive allocation. This result is obtained 
taking into account that with increases in r the variation xjq′ − xj (that is a 
difference between the consumption that the coalition can assign and the 
one of the examined allocation) becomes smaller and that the preferences of 
the consumers can be represented, by assumption, with differentiable utility 
functions. We find out that, considering the first order terms of the Taylor 
series expansion of the utility function and recalling that ((xj)j∈T , y, p) is a 
competitive equilibrium so D

jx uj(xj) = λj p (with  λj > 0), 

uj(xjq′) − uj(xj)  D
jx uj(xj) (xjq′ −xj) = 

λ
1 ( 1)

j

r r t− + −
 p (xt − ωt) > 0  

for every consumer belonging to the coalition.   � 

Proposition 12.19 can be seen as a generalization of the second 
welfare theorem, just like Proposition 12.17 was seen as an extension of the 
first one. It demonstrates how competitive equilibrium allocations are those 
to which the economies, composed of large number of consumers, converge 
if there is freedom to carry out exchanges and production and there is 
enough information on these possibilities.10 

 
 
12.7 Equilibrium, time and uncertainty 
 
In the beginning of Chapter 3, we introduced goods and qualified 

them according to their physical features (for example, wheat and steel), 
place of delivery (for example, Chicago or Milan), delivery date (for 
example now or in three months) and state of the nature, so whether a 
certain event occurs or not (for example, whether there is hail or not). In this 
paragraph we will concentrate on the last two characteristics. (Terms “date”, 
“time” and “instant” will be used as synonyms meaning a point in the time 
axis). 

As example of the first characteristic notice that production choices 
involve time directly, because the inputs have to be used normally before (in 
any case, not after) the outputs emerge. Therefore, inputs are qualified with 
an earlier (or not later) date than corresponding outputs. For the second 
characteristic, insurance contracts are a typical example. Contracts are based 
on state of the nature and harmful event gives right to contracted payment.  

Moreover, there are contracts on exchanges that are drawn up in 
different dates and indicate the delivery of goods in the same date of the 
contract or later. 

10 For the model with a continuum of agents, introduced in paragraph 11.13, there is 
an important Aumann’s theorem which states that the core coincides with the set of 
competitive equilibrium allocations under the same assumptions as for the existence of a 
competitive equilibrium,  
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Therefore, for every good (wheat or steel, available in a certain place) 
prices can differ with respect to contract date, delivery date and state of the 
nature that determines the right to obtain it. In the remaining of this 
paragraph we assume that every good is delivered in exchange for the 
numeraire good (which is one of the goods in the economy with nominal 
price that is always positive, we assume it is the good indexed with 1)11. 
With this assumption, the price of the good in question, with the numeraire 
as the accounting unit, can be denoted with symbol ph(t,b,c,s), where h 
denotes the type of the good (wheat or steel available in a certain place), t 
the contract date, b (with b ≥ t) the payment date in numeraire, c (with c ≥ t) 
the delivery date and s the event that determines the right for the purchaser 
to obtain the good.12 

With respect to contract date, two main types of the economies can be 
defined. The first one considers economies in which there is a unique time 
in which the exchange contracts are fixed and payments carried out. The 
corresponding equilibrium is called intertemporal equilibrium. Indicating 
with the number zero the contract and payment date, the competitive 
equilibrium concerns prices that can be denoted with ph(c,s), where c ≥ 0 
(since the prices ph(t,b,c,s) are in these economies ph(0,0,c,s) and, thus, can 
be denoted, for simplicity, as ph(c,s)). The other type looks at sequential 
economies in which there is a sequence of times in which the contracts are 
established, that is with t = 0, 1, 2,… An equilibrium, called a temporary 
equilibrium, corresponds to each of those instants.13 These two types of the 
economies determine in general different competitive allocations, also if the 
“data” that define the economies are substantially the same (however, 

11 It is natural to assume money as numeraire, so that the indicated prices are 
monetary prices. Nevertheless, introduction of money can create problems for general 
equilibrium analysis. For example, if money is qualified as a durable good that agents hold 
only because it can be used as (non exclusive) payment device, then its presence (with 
positive prices) is not justified in the intertemporal equilibrium (that will be defined 
shortly). In fact, in the intertemporal representation of an economy, there is only one date 
for the payments and nobody wants a positive quantity of costly, useless and unusable 
money in his bundle of goods. Also in the temporary equilibrium analysis, if time horizon 
is finite, introduction of money is problematic (if its value is zero in the last period then 
proceeding by backward induction it is also equal to zero in earlier periods). Therefore, we 
must assume specifically that money is better means of payment than other goods. We can 
motivate the use of money for example by relaxing assumption that exchanges are not 
costly and introducing transaction costs that are higher for non monetary exchanges. 

12 In what follows, when we discuss the relationship between intertemporal and 
sequential equilibrium, we adopt a notation that allows us to keep in mind that also 
payment for the good (and not only its delivery) can be contingent on some event. Denoting 
the date-event pair of the payment for the good with b

rs  (that is the r-th event in time b) and 

with c

rs  the date-event pair of the delivery of the good, the corresponding price is 

, ,
( )b c

r rh s s
p t , where t is the contract date.  

13 If the sequence of temporary equilibria is composed of equilibria that are all the 
same, then equilibrium is defined as stationary, just like anything that remains unchanged 
in time is defined. 
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consumption and production allocations coincide under the conditions 
stated, in the end of this paragraph, in Proposition 12.21).  

 
Equilibrium and time: interest rates. The comparison between the 

spot prices (i.e. with t b c= = ) and the forward prices (i.e. with t b c= < ) 
allows us to define interest rates (both for intertemporal and temporary 
equilibrium). Let’s consider the intertemporal equilibrium (in which all the 
contracts are formed at date 0 with payments at date 0) and, in which, for 
now, the contracts are not contingent on the events (i.e. with delivery of the 
good no matter what the state of the nature is, therefore with prices ph(c, Sc), 
where Sc indicates the sets of all possible states of the nature at time c, for 
convenience ph(c)).  

Definition 12.8  The interest rate for the h-th good for period between 
0 and c (with c > 0) is the ratio  

ih(c) = (0) ( )
( )

h h

h

p p c
p c
− , 

where ph(0) and ph(c) are, respectively, the spot price of the h-th good (that 
is contract, payment and delivery occur at date 0) and its forward price (that 
is delivery is postponed with respect to contract and payment date, so with 
some form of credit). Usually, we have ph(c) < ph(0) (in fact, with 
postponed delivery, we pay in advance with respect to the delivery of the 
good). Applying this definition to the numeraire good, for which by 
definition  p1(0) = 1, we get   

p1(c) =
1

1
1 ( )i c+

, 

that is, p1(c), which is the present value of one unit of numeraire good 
available at time c, defines the discount factor of the numeraire for the 
period between 0 and c. We note that interest rates are in general different 
for different goods (apart from being different for periods of different 
length).  

Let’s assume that there is a sequence of temporary equilibria. When 
we examine the temporary equilibrium at date 0, besides spot and forward 
prices there can also be future prices. Future prices consider the contracts in 
which the delivery of the good and payment are simultaneous, but 
postponed with respect to contract date (that is, b = c > t). For example, 
future price established at time 0 for the sale of wheat with delivery in six 
months and payment in six months. Then, considering also the payment 
date, the forward price of the h-th good can be denoted with ph(0,c) (rather 
than as we did before ph(c)) and the future price with  ph(c,c). Competitive 
forward and future prices are not independent. In fact, an agent can acquire 
the h-th good with delivery at time c using two diverse exchange ways. For 
example, he can buy the good forward: have a unit of good in time c paying 
at time 0 price ph(0,c). Otherwise, he can buy the good with the future 
contract, that gives him the right to get a unit of the good at time c, paying at 
time c price ph(c,c), and with a forward contract he buys the amount of 
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numeraire he needs at time c paying at time 0 the price p1(0,c) for every unit 
of the numeraire. Following the first way, at time 0 the price of good 
available at time c is ph(0,c). Following the second way, at time 0 the price 
that corresponds to the quantity of the numeraire to be paid for to have at 
time c the quantity of the numeraire established in the future contract is 
equal to the product ph(c,c) p1(0,c). Competitive market makes those two 
prices equivalent (otherwise, one could achieve infinite profit without any 
risk, buying at price min{ph(0,c), ph(c,c) p1(0,c)} and selling at max{ph(0,c), 
ph(c,c) p1(0,c)}). This no-arbitrage condition requires then 

                                 ph(0,c) = ph(c,c) p1(0,c) 

This condition has two implications. The first one reduces the number 
of markets present in the temporary equilibrium: if there are future markets, 
then it is sufficient that forward markets consider only the numeraire good 
(on these markets we deal with bonds without risk and without coupons, that 
is of the zero-coupon type, often denoted in general equilibrium literature as 
Arrow-Debreu bonds). The other implication concerns the interest rates. 

From the definition ih(0,c) = (0,0) (0, )
(0, )

h h

h

p p c
p c

−  and the no-arbitrage 

condition ph(0,c) = ph(c,c) p1(0,c) we obtain  

ih(0,c) =
1

(0,0)1 1
(0, ) ( , )

h

h

p
p c p c c

− , 

so we prove that the own-interest rates of the different goods are linked 
through ratios between spot and future prices. We get the following 
proposition. 

Proposition 12.20  If ph(c,c) = ph(0,0) for all goods, that is, future and 
spot prices are equal, then interest rates are equal for all the goods and 
coincide with the interest rate of numeraire good for the same period. 

Moreover, future and spot prices are equal if all the agents have 
stationary prices expectations, which is a sufficient condition for the 
existence of a unique interest rate for all goods. 

This implication is connected with speculation. Let’s assume that 
there are risk-neutral or risk-loving agents who speculate. Suppose that at 
time 0 one speculator expects a spot price at time c > 0 that will be different 
than the corresponding future price, that is ph(c,c,c)e ≠ ph(0,c,c) (where 
ph(0,c,c) is the above indicated price with symbol ph(c,c) and ph(c,c,c)e is the 
expected spot price for the temporary equilibrium at time c). Then, it is 
convenient for him to speculate, buying (selling) the good with the future 
contract if ph(c,c,c)e is larger (smaller) than ph(0,c,c), selling (buying) the 
good in the spot market at time c and achieving in such a way a profit. (Note 
that this type of arbitrage differs from the one, examined before, that was 
governed by condition  ph(0,0,c) = ph(0,c,c) p1(0,0,c). Previously, the profit 
achieved with arbitrage was certain, while now it is uncertain since it is 
subject to the realization of the expectations). If all the agents (speculating 
and not speculating) have stationary price expectations, that is ph(c,c,c)e = 
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ph(0,0,0), and it were ph(0,0,0) ≠ ph(0,c,c), then all the speculating agents 
operating in this market would act in the same direction, that is all buy or all 
sell and the equilibrium does not exist. This, consequently, implies the 
speculative no-arbitrage condition ph(0,0,0) = ph(0,c,c) (that is ph(0,0) = 
ph(c,c), if we neglect the index for the contract date that is 0). 

 

Equilibrium and uncertainty: contingent prices. We will now study 
dependence of prices on states of the nature in intertemporal equilibrium 
analysis. Therefore, we denote prices with ph(c,s). These prices, relative to 
an event, are called contingent just like the corresponding goods and 
markets.14 The buyer of a contingent good pays at time 0 price ph(c,s) and 
he receives the good at time c if event s occurs and he receives nothing if 
this event does not occur (the price of the good independent of the state of 
nature, so the price to receive the good with certainty, is ph(c, Sc) = 

( , )
cs S hp c s∈∑ , where Sc denotes the set of all possible states of nature at 

time c). Insurance and many financial contracts are of this type. For 
example, as shown in Paragraph 7.7, in an insurance contract, we pay a 
price (called premium) in order to receive at some future point in time a sum 
of money if a harmful event stated in the contract occurs and nothing if it 
does not occur. 

We assume that the time horizon is composed of a finite number of 
points, that is c∈{0, 1,…, T} (where T is the last instant for the delivery of 
goods). We denote the set of possible states of the nature at time c with Sc. 
As the time passes by more information is produced and so the set of states 
of nature is refined. Therefore, the number of elements in sets Sc is non 
decreasing in c and so the set ST ={ 1 ,...,

T

T T
Rs s } has the largest number of 

elements. We assume that this number, RT, is finite. Then, starting from ST, 
since ST is a partition of ST−1 = {

1

1 1
1 ,...,

T

T T
Rs s

−

− − }, we have that every element 
1T

rs −  of ST−1 is a subset of ST; then, since ST−1 is a partition of ST−2 = 
{

2

2 2
1 ,...,

T

T T
Rs s

−

− − } we get that every 2T
rs −  is a subset of ST−1; and so on. Then, 

we obtain S0 = { 0
1s } with 0

1s  = ST , because in the first period no information 
is available. Therefore, 1 = R0 ≤ R1 ≤…≤ RT−1 ≤ RT.  

Finally, we assume that sets Sc, for c = 1,…, T, are equal for all the 
agents, that is, that there is common information (no informational 
asymmetries). 

 

14 The definitions of state of the nature and event (that is a set of states of nature) are 
stated in the beginning of Chapter 7. Notice that events must be objectively observed. For 
example, one cannot insure against sadness (assuming that the sadness cannot be 
objectively observed because the agent can only pretend to be sad). 
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The increasing refinement of the sets of states of nature Sc is 

exemplified in Figure 12.15 by a tree of events, where T = 3; S0 = { 0
1s } with 

0
1s ={s1, s2, s3, s4, s5, s6}; S1={ 1

1s , 1
2s } with 1

1s ={s1, s2} and 1
2s ={s3, s4, s5, s6}; 

S2={ 2
1s , 2

2s , 2
3s } with 2

1s ={s1, s2}, 2
2s ={s3, s4, s5} and 2

3s ={s6}; and 
S3={ 3

1s ,…, 3
6s } with 3

rs = rs  for r = 1,…,6. 

With regard to every delivery date c, there are Rc prices ph(c,s) (with 
s∈Sc) for every good. Therefore, for every good, there are overall 
(considering all the possible delivery dates) R = 0

T
c cR=∑  prices. The 

intertemporal competitive equilibrium, with complete markets, determines 
all of them for all the goods. Recalling our description (until the preceding 
paragraph) of the general competitive equilibrium, in which we listed k 
goods, since every good is now qualified by a pair (h, c

rs ), the total number 
of goods (defined also by delivery date and the state of nature on the top of 
physical characteristics and place of delivery) is equal to k = KR, where K is 
the number of goods determined by their physical characteristic and place of 
delivery. 

If the sequential equilibrium is taken under consideration, observing 
the temporary equilibrium at time 0 and the set of contingent markets and 
corresponding future markets, we get the following no-arbitrage condition 
(analogous to the one that we have already seen for non contingent prices) 

ph(0,c,s) = ph(c,c,s) p1(0,c,s), 
where ph(c,c,s) is the future price of the h-th good contingent on event s at 
time c. Notice that contingent forward markets for only the numeraire good 
are necessary, that is Arrow-Debreu contingent bonds for every event 
s∈ 1

T
c= Sc. In other words, while in the case without uncertainty we need an 

Arrow-Debreu bond for every possible future date (therefore, T bonds), in 
case of uncertainty there are R−1 bonds (i.e. Rc bonds for every c = 1,…, T). 
Contingent bond gives the right to the delivery of a unit of numeraire at date 

s1 

s2 

s3 

s4 

s5 

s6 

 2
1s

2
2s

2
3s

1
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1
2s
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c if and only if state of the nature c
rs  is revealed, where r = 1,…Rc and c = 

1,…, T. 
Note that by including uncertainty we do not change general 

competitive equilibrium representation formed in the preceding chapter and 
preceding parts of this chapter. We account for uncertainty only by a 
semantic trick that defines the goods not only in relation to their physical 
characteristics and their localization but also with respect to all the possible 
states of the nature. Therefore, it is not necessary to specify agents’ 
preferences over the sets of acts (or lotteries), following the analysis from 
Chapter 7. In particular it is not necessary to assume that expected utility 
theory holds. It is sufficient that agents have systems of preferences 〈Xi, ∈i〉 
(exhibiting properties required in Paragraphs 11.4 and 11.6), in which 
consumption sets Xi are composed of bundles of contingent goods and firms 
have production sets Yj composed of contingent productions. Nevertheless, 
the number of implied goods (for every possible delivery place and date and 
state of the nature), even if it is finite, is enormous and it is doubtful whether 
general equilibrium representation that determines competitive prices of all 
these goods is a rational reconstruction of reality. General equilibrium with 
incomplete markets (that will be presented in Paragraph 12.9) is a response 
to this observation. With incomplete markets we assume that the market 
features lower than total number of goods and so competitive prices are 
determined only for a part of the goods.  

In the last part of this paragraph we compare intertemporal and 
sequential equilibrium and characterize conditions under which 
consumption and production allocations determined by intertemporal 
equilibrium are equal to the ones determined by the sequence of temporary 
equilibria.15 Let’s consider an intertemporal economy  = (〈Xi, ∈i〉, Yj, ωi, 
θi,j, i = 1,…, n, j = 1,…, m) and introduce a sequential economy defined by 
temporary economies, one for every node of event tree, ( t

rs ) = (〈Xi( t
rs ), 

∈
t
rs

i 〉, Yj( t
rs ), ωi( t

rs ), θi,j( t
rs ), i = 1,…, n, j = 1,…, m), with t = 0, 1,…, T. 

These economies are defined and connected with each other through the 
following relationships.  

15 We do not consider here the possibility of bankruptcy, so possibility that some 
agents may not honor the obligation they took on. This problem occurs in forward contracts 
(in spot settlement nobody has reason to sign a contract that he cannot honor, because he 
gets nothing in return). An agent can sell a good forward, collecting immediately the price 
and refusing to deliver the good later on. To avoid such possibility, economy has to employ 
penalties to make such behavior not profitable for agents. This solution can be applied in 
intertemporal equilibrium with complete markets even if there is uncertainty. On the 
contrary, in case of sequential equilibrium with incomplete markets, uncertainty can 
generate unintentional bankruptcy and this is a serious problem. An agent could not to 
honor a forward contract because it became too onerous and this would  lower agents’ 
availability to draw up such forward contracts. For this reason there are special institutions 
in the markets that provide guarantee against the risk of non-fulfilment. 
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With respect to the intertemporal economy, introducing the tree of 
events and denote its nodes with the set CS =  0

T
c= Sc (so that every element 

c
rs ∈CS characterizes a date-event pair), consumptions and productions are, 

respectively, points xi = , , ,( )c c
r ri h s h H s CSx ∈ ∈  and yj = , , ,( )c c

r rj h s h H s CSy ∈ ∈  of the sets 

Xi ⊂ K CS×  and Yi ⊂ K CS× , where H = {1,…, K} is the set of the 
goods distinguished on the base of physical characteristics and delivery 
place. Then, ωi = , , ,(ω )c c

r ri h s h H s CS∈ ∈ ∈Xi and ,θi j ∈[0,1] and ∑ 1
n
i= ,θi j = 1 for 

every j = 1,…, m and c
rs ∈CS. The prices are represented by a point p 

= , ,( )c c
r rh s h H s CSp ∈ ∈ ∈ K CS× , where the spot price of the numeraire is equal 

to 1, that is 0
11, 1sp = . Budget set of the i-th consumer is, as usual, Bi(p) = 

{xi∈Xi : pxi ≤ pωi + ∑ 1
m
j= θi,j max

j j
jy Y

py
∈

}, where  pxi = , , , ,c c
r rh H sc

r h s i h sCS p x∈ ∈∑  

and by analogy for pωi and pyj. Production choices are represented by 
supply functions sj(p) = arg max

j j
jy Y

py
∈

 and consumption choices by demand 

functions di(p) = {xi∈Bi(p): xi ∈i xi′ for every xi′∈Bi(p)}. The competitive 
intertemporal equilibrium ((xi*) 1

n
i= , (yj*) 1

m
j= , p*) is defined by conditions 

xi*∈di(p*) for every i = 1,…, n, yj*∈sj(p*) for every j = 1,…, m and ∑ 1
n
i= xi* 

≤ ∑ 1
n
i= ωi + ∑ 1

m
j= yj*. 

With respect to sequential economy, introducing for every t
rs ∈CS the 

subtree of events that originates at t
rs  and denoting its nodes with set CS( t

rs ) 
(for which every element b

rs ∈CS( t
rs ) or c

rs ∈CS( t
rs ), with b ≥ t and c ≥ t, 

characterizes a date-event pair (c,s) still possible at date-event t
rs ), exchange 

choices of the i-th consumer are points ( )t
riz s  = 

, , ; , (, )( ( )) t
r

b c b c
r r r r

t
ri h s s h H s s CS s

z s
∈ ∈

 

∈ K × (CS( t
rs ))2, where 

, , , ( )b c
r r

t
ri h s s

z s  denotes, for the i-th consumer, sale or 

purchase (a purchase if positive and selling if negative) of the h-th good 
chosen at time-event t

rs  with payment (in numeraire) at time-event b
rs ∈ 

CS( t
rs ) and delivery of the good at date-event c

rs ∈CS( t
rs ) (with b ≥ t and c 

≥ t). The consumers can also buy and sell the property shares in the firms, 
paying (in numeraire) at date-event b

rs ∈CS( t
rs ) and delivery at date-event 

c
rs ∈CS( t

rs ), with b ≥ t and c ≥ t, and buyers have the right to the 
corresponding flow of profit from the stated delivery date. Therefore, they 
can choose exchanges of shares represented by points ,ζ ( )t

i j rs = 

, , (, , )(ζ ( )) t
r

b c b c
r r r r

t
ri j s s s s CS s

s
∈

, where 
, , ,ζ ( )b c

r r

t
ri j s s

s  denotes, for the i-th consumer, 

the acquired share (if positive, or sold if negative) in the j-th company (with 
j∈J) at time-event t

rs , with payment (in numeraire) at date-event 
b
rs ∈CS( t

rs ) and delivery at date-event c
rs ∈CS( t

rs ) (with b ≥ t and c ≥ t). The 
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choices of the j-th firm regard points ( )t
j ry s  =

, , ; , (, )( ( )) t
r

b c b c
r r r r

t
rj h s s h H s s CS s

y s
∈ ∈

 

∈ K
 ×(CS( t

rs ))2, with ∑ ( )b t
r rs CS s∈ ; (, , ),( ( )) t

r
cb c rr r

t
r h H s CS sj h s s

y s ∈ ∈ ∈Yj( t
rs ), where 

Yj( t
rs ) ⊂ K

 ×CS( t
rs ) is the production set of the j-th company at date-event 

t
rs . The prices of the goods are represented, in every t

rs ∈CS, by point p( t
rs ) 

= 
, ; , (, )( ( )) t

r
b c b c
r r r r

t
rh s s h H s s CS s

p s
∈ ∈

∈ K
+ ×(CS( t

rs ))2, with the price of the 

numeraire equal to 1 if the payment is foreseen for the same date-event as 
delivery, that is with 

1, , ( )b c
r r

t
rs s

p s  = 1 if b c
r rs s= . The prices of the firms are 

represented by points ( )t
j rq s  = 

, , (, )( ( )) t
r

b c b c
r r r r

t
rj s s s s CS s

q s
∈

∈(CS( t
rs ))2 for every 

t
rs ∈CS and j = 1,…, m . Consider the branch of the events that precede t

rs  
(that is, the branch that connects 0

1s  with t
rs  in the tree of the events) and 

denote its nodes (excluding t
rs ) with CA( t

rs ). The endowment of the i-th 
individual, which is the result of exchanges carried out in the past, is at date-
event t

rs  represented by ωi( t
rs ) = ( , , ; ( )ω ( )) c t

r r
c
r

t
ri h s h H s CS ss ∈ ∈ , with , ,ω ( )c

r

t
ri h s s  = 

, ,ω c
ri h s + ( ); , , , ( )a t b b cr r r r r

a
s CA s s CS ri h s sz s∈ ∈∑  for the goods h = 2,…, H and ,1,ω ( )c

r

t
ri s s = 

,1,ω c
ri s + ' ' '; ( ); , , , , ,( ); ,1, , ( ) ( ) ( )a t c c c c cr r r r r r r

a t b b cr r r r r

a a
h H s CA s s CS r rh s s i h s s

a
s CA s s CS ri s sz s p s z s∈ ∈ ∈∈ ∈ − −∑ ∑  

' ' '; ( ); , , , , ,( )ζ ( )a t c c c c cr r r r r r r

a a
j J s CA s s CS r rj s s i j s sq s s∈ ∈ ∈∑  for the numeraire, where , ,ω c

ri h s  is 

the original endowment of the h-th good available in c
rs , i.e. the endowment 

that would be available in the absence of sales and purchases in preceding 
times, and 

, , , ( )b c
r r

a
ri h s s

z s   is a sale or purchase contracted in preceding date-

events for the delivery in date-event c
rs ∈CS( t

rs ). For the numeraire (the 
good indexed with 1) we also need to keep track of the payments and the 
receipts resulting from sales and purchases (also of Arrow-Debreu bonds)16 
contracted at preceding date-events and expiring at date-events c

rs ∈CS( t
rs )  

(while 'c
rs  is date-event of the delivery of the good or share of a firm). By 

analogy, denoting with 1
*

t
rs − ∈CA( t

rs ) the date-event that immediately 
precedes t

rs , the endowment of firms’ shares of the i-th consumer is 
represented at date-event t

rs  by ,θ ( )t
i j rs  = ,ζ ( )t

i j rs + , , ( )(θ ( ))c c t
r r r

t
ri j s s CS ss ∈ , 

where , ,θ ( )c
r

t
ri j s s  = 1

*, ,θ ( )c
r

t
ri j s s − + ( ); , , ,ζ ( )a t b b cr r r r r

a
s CA s s CS ri j s s s∈ ∈∑ , with 0

1, ,θ ( )c
ri j s s  

= , ,θ c
ri j s , which is the endowment without sales and purchases, and 

, ,θ ( )c
r

t
ri j s s ∈[0,1], with ∑ 1

n
i= , ,θ ( )c

r

t
ri j s s  = 1, for every j = 1,…, m, c

rs ∈CS( t
rs ) 

16 Therefore, 
,1, ,

( )b c
r r

a
ri s s

z s  is encashment (if positive) or payment (if negative) of the 

Arrow-Debreu bonds (bought and sold by the i-th agent at date-event a
rs ) expiring at date-

event c
rs . 
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and t
rs ∈CS. For the i-th consumer the intertemporal consumption plan in t

rs  
for date-events of the subtree CS( t

rs ) is defined by the point 

( )ω ( ) ( )b t
r r

t
s CS sr

t
ri is z s∈+ ∑  = ( )t

rix s ∈ ( )t
riX s ⊂ K

 ×CS( t
rs ). Using symbols we 

introduced, the budget set is Bi( ( )t
rp s ,(πj*( t

rs )) 1
m
j= ) = 

{ ( )i
t
rz s ∈ K

 ×(CS( t
rs ))2: ( )ω ( ) ( )b t

r r
t

s CS sr
t
ri is z s∈+ ∑  = ( )t

rix s ∈ ( )t
riX s  and 

p( t
rs ) ( )t

riz s + 1 ,ζ ( )( )m
j

t t
j r i j rq ss=∑  ≤ 1 ,θ ( )tm

j i j rs=∑ πj*( t
rs )}, where πj*( t

rs ) is the 

stream of profits of the j-th firm determined at date-event t
rs . The choice of 

the j-th firm at date-event t
rs  is represented by the supply function sj(p( t

rs )) 
that solves the problem 

( )
max

t
j ry s

∑ ( )b t
r rs CS s∈

πj( t
rs )

1, , ( )b t
r r

t
rs sp s  subject to the 

constraint ∑ ( )b t
r rs CS s∈ ; (, , ),( ( )) t

r
cb c rr r

t
r h H s CS sj h s s

y s ∈ ∈ ∈Yj( t
rs ), where the stream of 

profits πj( t
rs ) = ; , , , , ,( ) ( )( ( ) ( ))b c b c

r r r r

t t
h H s r rc t b tr r r rh s s j h s sCS s s CS sp s y s∈ ∈ ∈∑  is determined 

by the choice in t
rs : the firm maximizes the present value of this stream 

accounting for the forward price of numeraire. Consequently, πj*( t
rs ) = 

; , , , , ,( ) ( )( ( ) *( ))b c b c
r r r r

t t
h H s r rc t b tr r r rh s s j h s sCS s s CS sp s y s∈ ∈ ∈∑  where yj*( t

rs )∈sj(p( t
rs )). 

The choice of the i-the consumer at date-event t
rs  is represented by excess 

demand function ei ( ( ))t
rp s  = { ( )i

t
rz s ∈Bi( ( )t

rp s ,(πj*( t
rs )) 1

m
j= ): 

( )t
rix s ∈

t
rs

i '( )t
rix s , where ( )t

rix s  = ω ( )t
ri s + ( ) ( )b t

r rs CS s
t
riz s∈∑  and '( )t

rix s  = 

( ) 'ω ( ) ( )b t
r r

t
s CS sr

t
ri is z s∈+ ∑ , for every '( )t

riz s ∈Bi( ( )t
rp s ,(πj*( t

rs )) 1
m
j= )}. The 

sequence of temporal competitive equilibria ((zi*( t
rs )) 1

n
i= , (yj*( t

rs )) 1
m
j= , 

p*( t
rs )) t

rs CS∈  is defined for every t
rs ∈ CS  by zi*( t

rs )∈ei(p*( t
rs )) for every i 

= 1,…, n, yj*∈sj(p*( t
rs )) for every j = 1,…, m, ∑ 1

n
i= zi*( t

rs ) ≤ ∑ 1
m
j= yj*( t

rs ) 

and ∑ 1
n
i= ,ζ ( )t

i j rs  = 0 for every j = 1,…, m. 

When we consider the temporary equilibrium at date-event 0
1s  and 

confront it with intertemporal equilibrium (assuming that 0
1( )iX s  = Xi, 

0
1( )jY s = Yj , ,

ω c
r

c
rs i sCS∈∑  = ωi and 

, ,
θ c

r
c
rs i j sCS∈∑  = θi,j for every i = 1,…, n and 

j = 1,…, m), we see that in the first one just like in the second one 
consumptions and productions can be chosen for every date-event. The 
difference is only in the presence of higher number of exchange 
possibilities, substantially due to the possibility to execute payments at 
future date-events (while in the intertemporal economy they have to be done 
at the initial date) and in the possibility to postpone sales and purchases with 
reopening of the markets in the following temporary equilibria. This 
difference can lead to a different sequence of consumptions and productions 
in the distinguished cases, that is in intertemporal equilibrium and in 
sequential equilibrium. For example, if in sequential economy expectations 
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of prices do not coincide among different consumers, they can start 
speculating (who expects a higher price for a good buys it in the future 
market with the intention to sell it in the future in the spot market with a 
profit, and vice versa for the one who expects a lower price). As a result, 
there are wealth transfers among the consumers which in turn lead to change 
in their following consumptions. In contrast, in the intertemporal economy 
such speculations are impossible. Moreover, even if all the consumers have 
the same price expectations, but we allow them to be wrong (for example, 
everybody knows his preferences but not the preferences for the others so 
nobody is able to form a correct model), the consumers are forced to revise 
their consumption plans and the sequence of resulting consumptions is not, 
in general, equal to the one with correct expectations.  

Given what we have established so far, we can deduce that we can 
prove that consumption and production allocations are the same in the two 
types of equilibrium only by assuming that in temporary equilibrium agents’ 
expectations are correct and coincide, that is at every date-event there is 
perfect information about prices that occur at the following date-events. 
There are, of course, other conditions, among them temporal dynamic 
consistency of the preferences (introduced in the beginning of Chapter 6 and 
in Paragraph 7.9). We can, now, introduce the following proposition, that 
considers intertemporal economy  = (〈Xi, ∈i〉, Yj, ωi, θi,j, i = 1,…, n, j = 
1,…, m) and sequential economy ( t

rs ) = (〈Xi( t
rs ), ∈

t
rs

i 〉, Yj( t
rs ), ωi( t

rs ), 
θi,j( t

rs ), i = 1,…, n, j = 1,…, m) with t
rs ∈CS.  

Proposition 12.21 The same consumption and production allocations 
are obtained for both equilibria, i.e. the sequence of competitive temporary 
equilibria (or Radner equilibrium) and the competitive intertemporal 
equilibrium (or Arrow-Debreu equilibrium), with complete markets if: 

a) for every firm, every production feasible given the intertemporal 
production set is also feasible given the sequence of temporary production 
sets and vice versa, that is Yj = ( )t

r
t

s rCS jY s∈∑  for every j = 1,…, m;  

b) for every consumer, Xi = ( )t
r

t
s rCS iX s∈∑ , preferences in sequential 

economy satisfy temporal dynamic consistency and the systems of 
preferences (〈Xi( t

rs ), ∈
t
rs

i 〉) t
rs CS∈  and 〈Xi, ∈i〉 stand for the same preference 

relation for every pair xi, xi′∈Xi;  
c) original (that is, not generated by exchanges) endowments of goods 

and shares in the sequential economy coincide with the endowments in 
intertemporal economy. That is ωi = , , ,(ω )c c

r ri h s h H s CS∈ ∈  and θi,j = , ,(θ )c c
r ri j s s CS∈  

for every i = 1,…, n and j = 1,…, m; 
d) all agents’ price expectations are correct (or self-fulfilled, or 

rational).  
Proof. We provide intuitive instead of formal proof here. On one 

hand, since price expectations are correct (and agents know it) we get a 
sequence of no-arbitrage conditions on the prices that make the equilibrium 
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prices in the intertemporal economy and in sequential economy equivalent. 
On the other hand, production and consumption sets as well as preferences 
and endowments are equivalent in those two economies (intertemporal and 
sequential) and there does not exist a sequence of consumptions or 
productions allowed in sequential economy that would be excluded in 
intertemporal economy, and vice versa. Therefore, productions and 
consumptions chosen by the agents with respect to prices must coincide in 
these two types of economies. Consequently, competitive equilibria of these 
two economies are represented by equivalent systems of prices and by the 
same consumption and production allocations.                         � 

Proposition 12.21 has interesting implications with respect to the 
number of prices. In sequential, pure exchange economies with correct 
expectations, in order to reach the sequence of equilibrium productions and 
consumptions, it is sufficient that in every temporary equilibrium spot prices 
for all the goods and forward prices for the numeraire good (Arrow-Debreu 
bonds) only for every date-event immediately after the one that is examined 
are formed, that is, in every t

rs CS∈ , the prices , , ( )t t
r r

t
rh s sp s  for every h = 

2,…, H and 11, , ( )t t
r r

t
rs sp s+  for every 1 ( )t t

r rs CS s+ ∈ . The number of these 

prices, that is nevertheless still high, is much lower than the number 
necessary in the equivalent intertemporal economy (that requires forward 
prices for all the goods for delivery in every t

rs CS∈ ). For a production 
economy the situation is analogous (note that markets for property shares of 
firms do not necessarily need to exist), with one remark. If productions 

( )t
j ry s  include goods (input or output) available also at future date-events 

other than date–events immediately after t
rs , then we need to consider also 

the prices of Arrow-Debreu bonds for all those date-events. If, instead, the 
list of goods contains also semi-finished products (that subsequently use 
some inputs and produce outputs), then Arrow-Debreu bonds can be limited 
to date-events occurring only immediately after the examined one, but the 
number of goods must be higher.  

Notice that the existence of only one type of asset, Arrow-Debreu 
bonds, is sufficient in order to have complete markets in a sequential 
economy (so that all agents can take in every period steps to achieve 
consumptions and  productions chosen for this period and for successive 
date-events). It is therefore interesting to examine a situation with additional 
and/or substitute assets.  

An asset is, in general, a good that gives right to receive (and so an 
obligation to deliver for issuing party) contracted quantities of goods 
(numeraire, real goods or assets, in which case we talk about derivatives, for 
example options) at future date-events, as established by the asset. 

If there are portfolios of assets that allow to obtain returns in the same 
date-events, then no-arbitrage conditions occur for their prices, as shown 
previously for those particular assets with prices indicated as forward and 
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future prices. Arrow-Debreu bonds introduced before (in every period only 
one Arrow-Debreu bond for every date-event immediately after), together 
with spot markets for all the goods and with correct expectations for future 
date-events prices, are sufficient condition to have complete markets. In 
general, for the same situation (spot markets for all the goods and correct 
expectations of future date-events prices), if there are only assets that last 
one period, it is enough and necessary that the rank of return matrix is equal 
to the number of possible events (in period immediately after the examined 
period). 

For example, with respect to Figure 12.15, let’s examine temporary 
equilibrium at date-event 1

2s , that has immediately afterwards two possible 
date-events 2

2s  and 2
3s . Then the return matrix has to have rank equal to 2. 

The return matrix has as many rows as the number of assets and as many 
columns as the number of events, i.e. 2 columns. Every row indicates the 
returns (in units of numeraire) of the corresponding asset at any of the date-
events 2

2s  and 2
3s . If there are only Arrow-Debreu bonds, that, respectively, 

expire at date-events 2
2s  and 2

3s , then the indicated matrix is the identity 
matrix. If there are four assets, of the which the first one has return equal to 
1 in both date-events (therefore, it is a riskless or safe asset), etc., as shown 
in the following matrix 

                                             

1 1
0 2
0 4

0.2 0

 
 
 
 
 
 

 

since its rank is equal to 2, we can be certain that markets are complete. 
Prices of these assets are not, however, independent. Prices of two assets 
that define, in the indicated matrix, a non singular minor of order 2 (for 
example, the first two assets, but not the second and third one) are 
independent. In equilibrium by no-arbitrage conditions the third asset has 
price two times higher than the second one (because two units of the second 
asset give the same return as one unit of the third asset) and that the price of 
the first asset is five times higher than the price of the fourth asset plus half 
of the price of the second asset’s price (because having 5 units of the fourth 
asset and a half of the second assets gives the same returns as one unit of the 
first asset)17: so we have the two relationships p3 = 2p2 and p1 = 0.5p2 + 5p4.  

17 If R is a return matrix with a rows and r columns (where a r≥ ) and there is a non 
singular minor Rr of order r in R, then we have 1

d d r rp R R p−= , where pr is the price vector 
of the r assets corresponding to the rows of Rr, matrix Rd is the minor corresponding to the 
other a r−  assets, and pd is their price vector (these prices depend on the prices of the r 
assets assumed as independent). Note that 1

r rR p−  would be the prices of the Arrow-Debreu 

bonds in terms of pr, since r r ADp R p= , where pAD is the price vector of the Arrow-Debreu 
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Possibility to create derivative assets allows complete markets to 
emerge also when there are not enough primary assets. Assume that there 
are, for example, three possible events and one asset with returns [1, 3, 6]. 
Let’s introduce two derivative assets, of the type call option. The first one 
gives right to buy the primary asset (i.e. the asset with returns [1, 3, 6]) at 
strike price 2 and the second one at strike price 5. Then, the first call has 
returns [0, 1, 4] (that is, in the event that the primary asset has return lower 
than 2 option is not exercised, if it is higher than 2 the option is exercised by 
paying the strike price equal to 2, for which the return of the call is equal to 
the return on the primary asset minus 2). The second call has returns [0, 0, 
1]. Thus there are three assets and the return matrix has rank equal to 3, that 
is the number of possible events. It is not required that there are primary 
assets that give a positive return in every event. It is enough that returns are 
different in different events. If, for example, there are two possible events 
and there is only one Arrow-Debreu bond with returns [1, 0], then 
introducing one put option that allows to sell the primary asset (that is the 
Arrow-Debreu bond) at price 0.4, we get that this put has returns [0, 0.4]. 
(That is, if the primary asset has return higher than 0.4, the option is not 
exercised and if it is lower than 0.4 it is exercised and price 0.4 is collected). 
Thus, there are two assets with a return matrix with rank equal to 2,  that is 
the number of possible events. 

Proposition 12.21 and subsequent observations seem to lead us to 
conclude that sequential economy can be represented through intertemporal 
economy. Nevertheless, there are some aspects that make such conclusion 
rather problematic. In fact assumptions from the Proposition 12.21 are 
rather strong, in particular the one that requires correct expectations. This 
assumption implies also that there are no novelties as time passes by (new 
technologies, new goods, changes in preferences and in number of 
consumers, unforeseen destruction of resources, etc.), that would   
determine a sequence of temporary equilibria with consumption and 
production allocations and prices that cannot always be represented with an 
intertemporal equilibrium.  

In what follows we consider two analyses. The first one deals with a 
sequential economy where births and deaths of consumers are taken into 
account: that is we will consider the overlapping generations models. 
Equilibrium of this sequential economy can be, with appropriate 
assumptions, described as an intertemporal equilibrium. In the second one, 
the markets are not complete, that is there does not exist a sufficient number 
of goods (assets) in order to allow for welfare transfers for every possible 
future date-event. This situation, in fact, corresponds to reality, if we 

bonds. With respect to the above example, taking 
1 1

0 2rR =
 
  

 and 
0 4

0.2 0dR =
 
  

, we 

get 3 1

4 2

0 4 1 0.5

0.2 0 0 0.5

p p

p p

−
=

      
            

.       
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account for the number of the possible future states of the nature in real 
world. 

 
 
12.8 Overlapping generations models 
 
Overlapping generations models describe economies with agents that 

live for a given period of time. Therefore, they introduce deaths and births 
of the agents and allow agents of different age to coexist in every period. 
Assuming that the length of life is known (and, for simplicity, equal for 
everybody) the set of agents that are born at a certain time (and die at some 
point of time in the future) is called a generation. We talk about overlapping 
generations because in the same period of time there exist agents belonging 
to different generations. In this way, we describe an infinitely lasting 
economy (therefore with infinite number of goods and agents), but 
composed of a finite number of agents (of different generations) and goods 
in every period.  

In Figure 12.16 we represent agents in a simple economy with 
overlapping generations. Every generation lasts for two periods of time and 
in every period there are agents belonging to two different generations: 
young agents (those born in the current period) and old agents (born in the 
preceding period). 

 

 
 

The infinite number of agents and goods (not in every period but 
overall) has important consequences for competitive equilibrium. Namely, it 
may be impossible to determine competitive equilibrium because there is an 
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infinite number of equilibria and each of them is not locally unique. 
Moreover, equilibrium, determinable or not, may be inefficient. Even only 
for the sole existence of competitive equilibrium we would need to impose 
additional (though not particularly strong) assumptions. 

We will now try to understand why this problem arises and the impact 
of infinite number of goods and agents on it. In order to do it, we study four 
examples of pure exchange economy with constant number of agents 
(stationary population) that live for two periods of time (as shown in Figure 
12.16). These assumptions are maintained (if not specified otherwise) in the 
remaining of the paragraph.  

First, let’s extend Definitions 11.1-11.4 to economies with 
overlapping generations. 

Definition 12.9 A private ownership, pure exchange economy with 
overlapping generations (with agents that live for two periods) is 
represented by  = (〈 ,iX τ , ∈i,τ〉, ωi,τ, i =1,…, nτ, τ = 0, 1,…, ∞), where  
〈 ,iX τ , ∈i,τ〉 is the system of preferences of the i-th agent from generation τ 
over his consumption set ,iX τ ⊂ 2k

  (where k denotes the number of goods), 
ωi,τ

 = ,τ
, 1 τ(ω )  i k

h t h t
∞

= =  is the endowment of the same agent and nτ is the number 
of agents in generation τ.  

Let’s refer all prices to the same date, period 1, assuming that there is 
no difference between intertemporal and sequential equilibrium (in terms of 
Proposition 12.21). Then, price ph,t denotes price of the h-th good available 
at time t and paid for in period 1. These are not the prices used in exchanges, 
because overlapping generations models are intrinsically sequential models, 
since future generations are not present in period 1. Given that the agents 
live for two periods, prices used by agents from generation t are , ( )h tp t  and 

, 1( )h tp t+ , that are prices paid at period t, for goods h = 1,…, k  available, 
respectively, in period t and t+1 (that is, how many accounting units have to 
be paid in period t to get in period t a unit of good (h, t) and to obtain in 
period t+1 a unit of good (h, t+1)). In intertemporal equilibrium we imagine 
that agents from all the generations are present in initial period 1 and in this 
period they decide on all the exchanges, carrying out the corresponding 
payments and receipts. Perfect foresight of prices and no-arbitrage condition 

imply , 1 , 1

, ,

( )
( )

h t h t

h t h t

p p t
p p t

+ += . Budget set of consumer (i, τ), in relation to price 

matrix  p = , 1 1( )  k
h t h tp ∞

= =  > 0,  in presence of free disposal, is  
,τ ,τ ,τ ,τ ,τ ,τ

1 1 τ 1,τ ,τ ,τ+1 ,τ+1 , ,( ) { : ω }i i i i i ik k k
h h t hh h h h h t h tB p x X p x p x p∞
= = = == ∈ + ≤∑ ∑ ∑ ∑  

for every τ > 0 and 
      ,0 ,0 ,0 ,0 ,0

1 1 1,1 ,1 , ,( ) { : ω }i i i i ik k
h t hh h h t h tB p x X p x p∞
= = == ∈ ≤∑ ∑ ∑       for τ = 0. 

The choice of agent (i, τ) is represented by demand set 
      ,τ ,τ ,τ ,τ ,τ ,τ ,τ

,τ( ) { ( ) :  per ogni ( )}i i i i i i i
id p x B p x x x B p= ∈ ∈ ∈ .  
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Definition 12.10 A competitive equilibrium is represented by a price 
matrix , 1 1* ( *)  k

h t h tp p ∞
= ==  and an allocation τ,τ

1 τ 0* ( *)  ni
ix x ∞
= ==  with 

,τ ,τ τ 1
, 1 τ* ( *)  i i k

h t h tx x +
= == , such that ,τ *ix ∈ ,τ ( *)id p  for every i = 1,…, nτ  and  τ = 

0, 1, …, ∞,  and  1, , 1
1 1, , ,* *t ti t i tn n

i ih t h t h tx x− −
= =+ ≤ Ω∑ ∑ , where τ

,τ
τ 0 1, ,ωint

ih t h t= =Ω = ∑ ∑  for 
every h = 1,…, k  and  t = 1,…, ∞. 

We will now examine four examples. In the first example, there is a 
unique competitive equilibrium, that is moreover efficient. In the other three 
examples the following problems arise: a competitive equilibrium does not 
exist in second example; there are multiple equilibria (equilibrium cannot be 
determined) in the third example; equilibrium is unique but not efficient in 
the fourth example. 

Example with one competitive equilibrium that is efficient. All the 
generations are composed of an equal (finite) number of agents. All of the 
agents in every generation are of the same type and there are two perishable 
consumption goods in every period of time. We set the number of agents in 
every generation equal to 1 (that is all the quantities of goods considered 
are, from now on, per agent of a generation). The agents in the generations 
after 0 generation, that is agents from generations τ ≥ 1, have preferences 
represented by utility functions τ τ τ τ τ

1,τ 1,τ 1 2,τ 2,τ 1u x x x x+ +=  (where τ
,h tx  denotes 

the quantity of the h-th good available at time t consumed by the agent of 
generation τ) and endowments τ τ

τω (ω )t t
∞
== , with τ

τω (2,0)= ,  τ
τ+1ω (0,2)=  

and τωt = (0,0)  for every t ≥ τ+2. The agents from 0 generation have utility 
functions 0 0 0

1,1 2,1u x x=  and endowment 0 0
1ω (ω )t t

∞
== , with 0

1ω (0,2)=  and 
0ω (0,0)t =  for every t ≥ 2. Then, resources are equal to (2, 2)tΩ =  in every 

period of time, that is for t ≥ 1. The budget constraint of agents from 
generation t is 1, 1, 1, 1 1, 1 2, 2, 2, 1 2, 1 1, 2, 12 2t t t t

t t t t t t t t t tp x p x p x p x p p+ + + + ++ + + ≤ + . The 

budget constraint of agents from 0 generation is 0 0
1,1 1,1 2,1 2,1 2,12p x p x p+ ≤ . 

Consequently, the agents from generations t ≥ 1 choose 1,
t

tx = 1, 2, 1

1,

1
2

t t

t

p p
p

++
, 

2,
t

tx = 1, 2, 1

2,

1
2

t t

t

p p
p

++
, 1, 1

t
tx + =  1, 2, 1

1, 1

1
2

t t

t

p p
p

+

+

+
, 2, 1

t
tx + = 1, 2, 1

2, 1

1
2

t t

t

p p
p

+

+

+
; while the 

agent from generation 0 chooses  2,10
1,1

1,1

p
x

p
= , 0

2,1 1x = . Equilibrium in periods 

t > 1 requires 1,
t

tx + 1
1, 2t

tx − = , that is 1, 2, 1

1,

1
2

t t

t

p p
p

++
+ 1, 1 2,

1,

1 2
2

t t

t

p p
p

− +
= , for the 

first good, and, for the second good, 2,
t

tx + 1
2, 2t

tx − = , that is 

1, 2, 1

2,

1
2

t t

t

p p
p

++
+ 1, 1 2,

2,

1 2
2

t t

t

p p
p
− +

= , so 1, 1 1, 2, 2, 1 1, 2,4 4t t t t t tp p p p p p− ++ + + = = . 
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Then, we get that 1, 2,t tp p=  for every t > 1 and , 1 , , 12 0h t h t h tp p p+ −− + =  for h 
= 1, 2 and for every t > 1. This equation has general solution ,h t h hp t= β + γ  
for t ≥ 1, where hβ  and hγ  are arbitrary constants, to be determined by 
initial conditions. In period 1 equilibrium requires 0 1

1,1 1,1 2x x+ =  and 

0 1
2,1 2,1 2x x+ = , that is 2,1

1,1

p
p

+ 1,1 2,2

1,1

1 2
2

p p
p
+

=  and 1,1 2,2

2,1

11 2
2

p p
p
+

+ = , that is 

1,1 2,1 2,2p p p= = . Then, equation 1, 2,t tp p=  for every t and the above 
indicated solution of the difference equation require 1 2 0β = β =  and 

1 2γ = γ = γ , that is 1, 2, 1,1t tp p p= =  for every t ≥ 1. Therefore, the 

competitive equilibrium is represented by price matrix 2
, 1 1* ( *)  h t h tp p ∞

= == , 

where , * γh tp = , and allocation *x = ττ
1 τ 0( *)  n

ix ∞
= =  with ,τ τ 2 τ 1

, 1 τ* ( *)  i
h t h tx x +

= == , 

where τ
, * 1h tx = . This allocation is also efficient. In fact, in order to improve 

one agent’s situation, leaving others’ situation unchanged, we would need to 
give him more than determined by competitive equilibrium of one good, 
taking away from a young agent from the next generation. This agent would 
have to be compensated when he is old by an additional quantity of this 
good taken away from a young agent from the next generation, and so on. 
This occurs to be impossible. Let’s imagine to increase the utility of one 
agent from generation τ increasing by τε  the quantity τ

1,τ 1* 1x + = , to obtain 
τ
1,τ 1 τˆ 1 εx + = + . Then, the agent from the following generation has 
τ+1
1,τ 1ˆ 1 εx + τ= −  and to be compensated, remembering τ τ τ τ τ

1,τ 1,τ 1 2,τ 2,τ 1u x x x x+ += , 

he would need τ+1
1,τ 2 τ 1ˆ 1 εx + += + , with 1(1 )(1 ) 1τ τ+− ε + ε = , that is 

1
1 1

1τ+
τ

ε = −
− ε

, and so on. Therefore we have 1
1 1

1t
t

+ε = −
− ε

 for every t ≥ 

τ. The solution of this difference equation diverges, if 0 1τ< ε < , for t → ∞, 
as illustrated in Figure 12.17. Then, for sufficiently high t , we get that 

1
1, 1ˆ 1 ε 0t

t tx +
+ = − ≤  and this proves that such a compensation is impossible. 
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Example without competitive equilibria. All the generations are 

composed of an equal number of agents (for example equal to one). All 
agents are of the same type and there is only one perishable good in every 
period of time. Agents from generations τ ≥ 1 have preferences represented 
by utility function τ τ τ

τ τ 13u x x += +  (where τ
τx  and τ

τ 1x +  indicate, respectively, 
quantity of good available at time τ  and at time τ+1) and endowment 

τ τ
τω (ω )t t

∞
==  with τ τ

τ τ 1ω ω 1+= =  and τω 0t =  for every  t > τ+1. Agents from 
generation 0 have preferences represented by utility function 0 0

1u x=  and 
endowment 0 0

1ω (ω )t t
∞
==  with 0ω 2 t

t
−=  for every t (endowment with infinite 

elements is crucial, in this example, for equilibrium inexistence). Then in 

period 1 resources are equal to 1
3
2

Ω =  and in periods t > 1 they are equal to 

2 2 t
t

−Ω = + . Indicating with tp  the price of good available at time t, the 
budget constraint of an agent from generation t (with t ≥ 1) is 

1 1
t t

t t t tp x p x+ ++ ≤ 1t tp p ++ , while the one of agents from generation 0 is 
0

1 1p x ≤ 1 2 t
t tp−∞
=∑ .18 In order to prove that competitive equilibrium does not 

18 It should not be surprising that an agent from generation 0 manages to sell a good  
available at time t > 2 (so when he is dead) to an agent from generation 1 (also dead in 
period t > 2). These goods are sold by agents from generation 0 to agents from generation 
1, then from them to those from generation 2, and so on, until they become a property of 
agents from generation t (that consume it). This happens in real world too. Consider a 
market of irredeemable bonds (i.e. not terminable by payment of the principal, but giving 
perpetual returns), through which agents exchange flows of returns the most part of which 
mature after their death. 

tε

1t+ε

τε 1 

1 

Figure 12.17 
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exist imagine, on the contrary, that it exists. Since, for every good there is at 
least one agent with preferences that are strongly monotone with respect to 
this good, all prices have to be positive in equilibrium. The choice of agents 

from generation t is t
tx  = 0, 1

t
tx + =

1

1 t

t

p
p +

+  if 1t

t

p
p
+  < 3; 11t t

t
t

px
p
+= + , 1 0t

tx + =  

if 1t

t

p
p
+  > 3; undetermined, with 0t

tx ≥ , 1 0t
tx + ≥  and 13 4t t

t tx x ++ = , if 1t

t

p
p
+  = 

3. We prove that 1 3t

t

p
p
+ <  for every t ≥ 1. In order to do that we introduce 

the set 'T  of periods of time t > 1 for which we have 1t

t

p
p
+  < 3, that is 

1' { 1: 3}t

t

pT t
p
+= > < . First, we find out that this set is not finite. In fact, if it 

is finite, there would be a t̂  with 1 3t

t

p
p
+ ≥  for every ˆt t≥ . Then, the 

endowment of an agent from generation 0 would have an infinite value with 

respect to the price of the good in period 1, since 1
1

1 2 t
t tp

p
−∞

= =∑  

ˆ 1
ˆ1

1 1

1 12 2t tt
t t tt tp p

p p
− −− ∞

= =+∑ ∑  with ˆ ˆ ˆ
ˆ 1

ˆ1 1

1 2 2 1 2t t st t s
t t st

t

p p
p

p p p
− − −∞ ∞ +

= =

 
= + =∑ ∑ 

 
 

ˆ ˆ ˆ
1 1

ˆ1 1

2 1 2t s st t r
s r

t r

p p
p p

− −∞ +
= =

+ −

 
= + ≥∑ ∏ 

 

ˆ ˆ
1

1

32 1
2

s
t t

s
p
p

− ∞
=

  + = ∞∑     
. As a result, 

this agent would demand an infinite quantity of good 1, that is 0
1x = ∞ , that 

is incompatible with availability 1
3
2

Ω = . Also, there cannot exist a t ≥ 2, 

with 
1

3t

t

p
p −

≥  and 1 3t

t

p
p
+ < , because in such a case demand for good t, 

expressed by individuals from generations t−1 and t, would be, by 

individuals from generation t−1, equal to 1 0t
tx − =  if 

1

3t

t

p
p −

>  or to 

1 4[0, ]
3

t
tx − ∈  if 

1

3t

t

p
p −

= , and, by individuals from generation t, equal to 

0t
tx = .  Thus a quantity lower than the available quantity 2 2 t

t
−Ω = +  of the 

good t would be demanded, in contrast with equilibrium condition that 
requires equality between demand and supply (recalling that the preferences 

are strongly monotone). Therefore, it must be that 1 3t

t

p
p
+ <  for every t ≥ 1. 

Let’s examine the market for good t: demand is 1t
tx − 0>  and t

tx  = 0, so the 
equilibrium condition 1t

tx − + 2 2t t
t tx −= Ω = +  implies that 1 2t

tx − > . Then, 
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considering the budget constraint of generation t (with t ≥ 1), that requires 
1 1 1

t t
t t t t t tp x p x p p+ + ++ ≤ + , and having 0t

tx = , we get the inequalities 

1 1 1 12t
t t t t tp p p x p+ + + ++ ≥ > , so with 1t tp p+ <  for every t ≥ 1. Inequality 

1t tp p+ <  for every t ≥ 1, however, implies that an agent from generation 0 

demands a quantity of good 1 equal to 0
11

1

1 2 t
t tx p

p
−∞

== =∑  

1
2 21

1 12 2 1
2 2

t tt s
t ts

s

p
p

− −∞ ∞+
= ==+ < + =∑ ∑∏ . Consequently, demand for good 1, 

that is equal to 0 for agents from generation 1, is smaller than the available 

quantity 1
3
2

Ω = . Therefore, a competitive equilibrium does not exist for 

this economy. 

Example without a determined competitive equilibrium. All the 
generations t ≥ 1 are composed of an equal number of two types of agent.  
(for example one agent of each type). Generation 0 is composed of only one 
type of agent (in order to keep the population stationary, there must be two 
agents of this type). In every period of time there are two perishable 
consumption goods. Agents from generations τ ≥ 1 have preferences 
represented, respectively for the two types, by utility functions 

1,τ 1,τ 1,τ 1/ 2
1,τ 1,τ 12( )u x x += +  and 2,τ 2,τ 1/ 2 2,τ

2,τ 2,τ 12( )u x x += +  (where ,τ
,

i
h tx  denotes the 

quantity of the h-th good consumed at time t by agent of type i from 
generation τ) and by endowments 1,τ 1,τ

τω (ω )t t
∞
== , with 1,τ

τω (1,0)=  and 
1,τω (0,0)t =  for every t > τ, and 2,τ 2,τω (ω )t t

∞
=τ= , with 2,τ

τ 1ω (0,1)+ =  and 
2,τω (0,0)t =  for t = τ and for every t > τ+1. Every agent from generation 0 

has utility function 0 1/ 2 0 1/ 2 0
1,1 2,12 ( )u x x= +  and endowment 0 0

1ω (ω )t t
∞
== , with 

0
1

1ω (0, )
2

=  and 0ω (0,0)t =  for every t ≥ 2. The available quantity of two 

goods is represented by (1,1)tΩ =  in every period of time, that is for t ≥ 1. 
The budget constraint of agents (1, t) (type 1 from generation t), who are 
interested only in the first good and consequently make exchanges only of 
this good. is given by 1, 1,

1, 1, 1, 1 1, 1 1,
t t

t t t t tp x p x p+ ++ ≤ , where 1,tp  and 1, 1tp +  denote 
price of good 1 available in, respectively, period t and t+1. The budget 
constraint of agents (2, t), that exchange only the second good, is 

2, 2,
2, 2, 2, 1 2, 1 2, 1

t t
t t t t tp x p x p+ + ++ ≤ . The budget constraint of agents from generation 

0 is 0 0
1,1 1,1 2,1 2,1 2,1

1
2

p x p x p+ ≤ . Agent (1, t) chooses 1,
1,

t
tx = 1,

1, 1

1 t

t

p
p +

− , 

2

1,1,
1, 1

1, 1

tt
t

t

p
x

p+
+

 
=   
 

; agent (2, t) chooses 
2

2, 12,
2,

2,

tt
t

t

p
x

p
+ 

=   
 

, 2,
2, 1

t
tx + = 2, 1

2,

1 t

t

p
p

+− ; 
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while agent 0 chooses 
2

2,10
1,1

1,1

1
2

p
x

p
 

=   
 

, 2,10
2,1

1,1

1 1
2 2

p
x

p
= − . Equilibrium in 

periods t > 1 requires, for good 1, 1,
1,

t
tx + 1, 1

1, 1t
tx − = , that is 

1,

1, 1

1 t

t

p
p +

−
2

1, 1

1,

1t

t

p
p

− 
+ =  
 

, that is 1, 1

1,

t

t

p
p

+ =
2

1,

1, 1

t

t

p
p −

 
  
 

, so 

12

1, 1 1,2

1, 1,1

t

t

t

p p
p p

−

+  
=   
 

. For 

the second good, 2, 2, 1
2, 2, 1t t

t tx x −+ =  for every t > 1, that is 
2

2, 1

2,

t

t

p
p

+ 
+  

 
 

2,

2, 1

1 1t

t

p
p −

− = , so 2, 1

2,

t

t

p
p

+ =
1/ 2

2,

2, 1

t

t

p
p −

 
  
 

, that is 

1(1/ 2)

2, 1 2,2

2, 2,1

t

t

t

p p
p p

−

+  
=   
 

. Equilibrium 

in period t = 1 requires, for the first good, 0 1,1
1,1 1,12 1x x+ = , that is 

2

2,1 1,1

1,1 1,2

1 1
p p
p p

 
+ − =  

 
, so 1,2

1,1

p
p

=
2

2,1

1,1

p
p

−
 
  
 

, and, for the second good, 

0 2,1
2,1 2,12 1x x+ = , that is 

2

2,1 2,2

1,1 2,1

1 1
p p
p p

 
− + =  

 
, so 

1/ 2

2,2 2,1

2,1 1,1

p p
p p

 
=   
 

. Then, since 

there are two equations for three unknowns, we get that the exchange ratio 
2,1

1,1

p
p

 is arbitrary. (It belongs to the interval [0,1]  to have internal solutions: 

in fact, 1,1,
1,

1, 1

1 tt
t

t

p
x

p +

= − , 2, 12,
2, 1

2,

1 tt
t

t

p
x

p
+

+ = −  and 0
2,1

1
2

x = −  2,1

1,1

1
2

p
p

 respectively 

imply, in order to have internal points, 12

11

1p
p

≥ , 22

21

1p
p

≤  and 21

11

1p
p

≤ ). 

Setting 2,1 1

1,1

p
p

−= α  (so α ≥ 1), we finally get other exchange ratios 

2,2 1/ 2

2,1

p
p

−= α , 1,2 2

1,1

p
p

= α , 1, 1 2

1,

tt

t

p
p

+ = α  and 2, 1 (1/ 2)

2,

tt

t

p
p

+ −= α . There is, then, an 

infinite number of competitive equilibria (one for every α ≥ 1). Therefore, 
equilibrium is indetermined.  

Example with an inefficient competitive equilibrium. All the 
generations are composed of an equal number of agents (for example equal 
to one), all of the same type and there is only one consumption good in 
every period of time. Agents from generations τ ≥ 1 have preferences 
represented by utility function τ τ τ

τ τ 1u x x += +  (where τ
τx  and τ

τ 1x +  denote, 
respectively, quantity of good consumed in time τ  and τ+1 by agent from 
generation τ) and an endowment τ τω (ω )t t

∞
== τ  with τ τ

τ τ 1ω ω 1+= =  and τω 0t =  
for every t > τ+1. Agents from generation 0 have preferences represented by 
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utility function 0 0
1u x=  and endowment 0 0

1ω (ω )t t
∞
== with 0

1ω 1=  and 
0ω 0t =  for every t > 1. Allocation represented by endowments and vector of 

prices *p = 1( *)t tp ∞
= with * 1tp =  for every t constitute a competitive 

equilibrium. At these prices no agent can increase his utility with sales or 
purchases. However, there exist feasible Pareto-superior allocations, that is 

with higher utility for all the agents. Let 10 ε
2

< <  and consider allocation 

that assigns to agents from generation 0 quantity 0
1̂ 1 εx = +  (so 

0 0 0 0
1 1ˆ( ) 1 ε 1 (ω )u x u= + > = ), and to agents from generation t quantity 

1ˆ 1 εit t
itx == −∑ , 1

11ˆ 1 εit t
itx +
=+ = + ∑ (so 1

1 1ˆ ˆ( , ) 2 ε 2 (ω ,ω )t t t t t t t
t t t tu x x u+

+ += + > = ). 
This allocation is better for all the agents and feasible (because 1ˆ ˆ 2t t

t tx x −+ =  
for every t ). Therefore, the indicated competitive equilibrium is inefficient. 

The last three examples introduce the main terms for the discussion of 
the overlapping generations analysis. 

The existence of a competitive equilibrium is guaranteed by the usual 
assumption for the finite case and by some new assumptions regarding the 
case with  infinite agents and goods. These assumptions require that the 
number of agents and goods be countable, aggregate endowment of every 
good be positive and bounded, every good be desired by a finite number of 
agents, and consumption and endowment of every agent be referred to a 
finite number of time periods.19  

Impossibility to determine equilibrium is probably the most notable 
feature of overlapping generations models. While in the finite case 
indeterminacy is not normally robust (as shown in Paragraph 12.1), in 
overlapping generation models it can be robust. An intuitive explanation is 
connected with equilibrium feasibility conditions (according to which 
aggregate demand of every good is equal to available quantity), that are 
required for every time period t, but not necessarily for  t = ∞. There can be 
as many feasibility conditions missing as many goods are present in a time 
period minus one (being a condition provided by Walras law) and this 
number is a measure of indeterminacy. (In the example without a 
determined equilibrium, there are 2 goods in every time period and there is 
1 degree of indeterminacy, signaled by the arbitrary value of α. The missing 
market for t = ∞ can be found noting that 1,lim ( ) 0t tp t→∞ =  and so the 
budget constraint of agents of type 1 allows them to demand an infinite 
quantity of the first good at young age at t = ∞, while the available quantity 
is equal to 1). Indeterminacy of equilibrium in these models provides a nice 
microeconomic foundation to represent some aspects of Keynesian 
macroeconomy. For example in equilibrium employment can take any value 
in a certain interval, so involuntary unemployment occurs.  

19 For a more accurate and complete representation see Geanakoplos and 
Polemarchakis (1991).  
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Inefficiency of competitive equilibrium illustrated by the fourth 
example means that the first welfare theorem does not hold. It is interesting 
to see why the proof of this theorem does not hold in the examined example. 
Let’s take the proof of Proposition 11.6 and apply to the example in which 
on one hand we have a competitive equilibrium allocation (coinciding with 
the endowment allocation) and on the other hand a feasible allocation that is 
Pareto-superior. The first one is τ τ

τω (ω )t t
∞
==  with 0

1ω 1=  and 0ω 0t =  for 
every t > 1, and τ τ

τ τ 1ω ω 1+= =  and τω 0t =  for every t > τ+1. The second one 

is τ τ
τˆ ˆ( )t tx x ∞

==  with 0
1̂ 1 εx = +  and 0ˆ 0tx =  for every t > 1, and τ τ

1τˆ 1 εi
ix == −∑ , 

τ
τ 1x̂ + = τ 1

11 εi
i
+
=+ ∑  and τˆ 0tx =  for every t > τ+1. This allocation is feasible 

because 1ˆ ˆ 2t t
t tx x −+ =  for every good t. Following the proof from Proposition 

11.6 (the first welfare theorem) we induce from this equality (multiplying 
by tp  and summing up) that 1

1 ˆ ˆ( )t t
t t t tp x x −∞
= + =∑ 1 2t tp∞

=∑  for every 

1( )t tp p ∞
== , that is 1 ˆ t

t t tp x∞
= +∑ 0 11 1ˆ t

t tt t tp x p∞ ∞
= =+ + = +∑ ∑ 0 1t tp∞

= +∑ , and 
therefore, there is at least one t ≥ 0 (that is one agent) for whom  

1 1 1ˆ ˆt t
t t t t t tp x p x p p+ + ++ ≤ +  (obviously, 0

1 1 1ˆp x p≤  for t = 0). However, this 
does not happen in the examined case. In fact, with * 1tp =  for every t = 

1,…, ∞, we find out that 1ˆ ˆt t
t tx x ++ = 11 εit

i=−∑ 1
11 εit

i
+
=+ + =∑ 12 ε 2t++ >  for 

every t ≥ 1 and 0
1̂ 1 ε 1x = + > . The above implication does not hold because 

1 2 *t tp∞
=∑ , that is 1 *t t tp∞

= Ω∑ , is infinite in the examined case, while it is 
bounded in the proof of Proposition 11.6. We can, then, induce that the first 
welfare theorem (as stated in Proposition 11.6, that considers weak 
efficiency) holds also for overlapping generations models if equilibrium 
prices are such that the aggregate value of the endowments, that is 

1 *t t tp∞
= Ω∑ , is bounded.20 

Competitive equilibrium allocation is, by Proposition 11.7, strongly 
efficient if preferences of all the consumers are locally non satiated.  In 
overlapping generations models this property holds if we introduce a bit 
stronger condition. We need to assume that preferences are monotone (as 
indicated in Paragraph 3.2, the preferences are monotone if x′ >> x implies 
x′  x). The proof can be obtained in an analogous way to the proof of 
Proposition 11.7.21 Thus, a competitive equilibrium allocation (for 

20 Note that this condition is sufficient but not necessary. In fact, in the first example 
in this paragraph competitive equilibrium allocation is efficient even if this condition is not 
satisfied.  

21 In the proof we need monotonicity instead of local non satiation since, in case of  
an infinite number of goods, for local non satiation (unlike for monotonicity) the inequality 

* * ωi ip x p<  does not imply existence of a point 'i iix x  such that * ' * ωi ip x p< . 

Let’s consider, for example, the utility function 
1,...,

mini ih
h

u x
= ∞

= , an endowment 1ω (ω )i ih h

∞

==  
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overlapping generations economy) is strongly efficient if the aggregate 
value of the endowments (that is 1 *t t tp∞

= Ω∑ , where p* is the equilibrium 
vector of prices) is bounded and preferences of all the agents are monotone. 

The second welfare theorem applies to overlapping generations 
models without any particular problems. It can be formulated in the 
following way (that holds also for models with a finite number of 
generations). 

Proposition 12.22 If an allocation τ,τ
1 τ 0ˆ ˆ( )  ni

ix x ∞
= == , with ,τˆ ix =  

,τ τ 1
, 1 τˆ( )  i k

h t h tx +
= =  (where (i, τ) denotes agent i from generation τ and nτ the number 

of agents in this generation) is strongly efficient for a given economy with 
overlapping generations and this economy allows for competitive 
equilibrium ( *, *)x p  given the endowments ,τ τ 1

, 1 τ(ω )  i k
h t h t

+
= = = ,τ τ 1

, 1 τˆ( )  i k
h t h tx +

= = , then 
ˆ( , *)x p  is also a competitive equilibrium. 

Proof. The competitive equilibrium allocation is necessarily such that 
,τ *ix  ∈i,τ ,τ ,τˆωi ix=  for every i = 1,…, nτ and τ = 0, 1,…, ∞. Since allocation 

τ,τ
1 τ 0ˆ ˆ( )  ni

ix x ∞
= ==  is strongly efficient and allocation x* is feasible, we must 

have ,τ *ix  ∼ i,τ ,τˆ ix  for every i = 1,…, nτ and τ = 0, 1,…, ∞. Therefore, also 
ˆ( , *)x p  is a competitive equilibrium.    � 

 

    

with ω 2 h

ih

−=  for  h = 1,…, ∞, a bundle of goods 1( )i ih hx x ∞

==  with 1ix = 22−  and 2 h

ihx −=  

for  h = 2,…, ∞ and a vector of prices 1* (1)hp ∞

== . We find out that 
3

* 1
4ip x = < = * ωip , 

while 'i iix x  requires 
1,...,

min ' 0ih
h

x
= ∞

> , so  with * ' 1 * ωi ip x p= ∞ > = .  
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