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CHAPTER 11.   General equilibrium analysis I 
 

 

Partial equilibrium analysis, considered in the previous chapter, is an 

important instrument to study markets for goods in which interdependence 

can be disregarded as well as a very useful introduction to the analysis of 

general equilibrium. However, when interdependence is relevant, in other 

words when the equilibrium values (price and quantity) of the good 

examined influence the equilibrium values of other goods and vice versa, 

then partial equilibrium analysis is insufficient. Let’s analyze labor market 

as an example. Wages and employment influence significantly the demand 

and supply of the consumption goods. Prices and produced quantities of 

these goods, on the other hand, have large influence on the demand and 

supply of employment. Therefore, assuming that these influences are not 

relevant and analyzing the labor market using partial equilibrium analysis 

would lead to a poor representation of the economic reality. Instead, we 

need to carry out analysis that will explicitly take into account 

interdependence and general equilibrium serves this purpose.  

General equilibrium analysis examines feasible choices with respect to 

all goods and all agents. All production levels and exchanges are established 

and an allocation of all goods to all the agents in the economy is determined. 

General equilibrium analysis is obviously more complex than partial 

equilibrium. Not only it requires extensive mathematical reasoning in order 

to obtain the main results (like equilibrium existence, uniqueness, stability, 

efficiency and comparative statics), but also the applications of the theory 

are less specific (for example because of the large number of variables and 

conditions implied by the simultaneous consideration of all goods and all 

agents). Moreover, even though studies of non-competitive markets are not 

lacking in general equilibrium literature, the main part of this literature 

assumes that markets are competitive and disregards the case of non-

competitive markets. This situation depends, on one hand, on the intrinsic 

difficulty of general equilibrium analysis and, on the other hand, on the 

consideration that competitive equilibrium allocations serve as an important 

benchmark for all allocation comparisons. 

 In the remaining of this and next chapter, we will first define, under 

some assumptions, general competitive equilibrium (or Walrasian 

equilibrium, that owes its name to Walras, who was the first one to examine 

it in his Elements of Pure Economics, first edition 1874-77). Then we will 

introduce some analyses regarding, among other aspects, existence, 

uniqueness and stability of the equilibrium and the core.  
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11.1 General competitive equilibrium 

 

Competitive equilibrium was introduced in Definition 10.1. The 

choices of price-taking agents were examined in Chapters 3, 4 and 5. We 

now need to specify these choices in the general equilibrium framework and 

ensure their feasibility. Each of the agents, as in Paragraph 4.5, has some 

endowment of goods, that can be exchanged. The aggregate Walrasian 

demand function of the consumers is, as shown in Paragraph 4.6, of the type 

D(p, p 1,…, p n) and excess demand is given by D(p, p 1,…, p n)  , 

with  = 1

n

i i, where i  k  is the endowment vector of the i-th 

consumer (k is the number of goods). If we do not have the necessity to 

evidence the dependence on the endowments, we can denote the aggregate 

demand function as D(p).  

In a pure exchange economy (that is without production) the 

feasibility condition of the exchange between consumers requires that the 

overall quantity of the goods that the consumers desire, equal to D(p), is 

equal to the overall quantity of goods available in the economy, equal to . 

Therefore, equilibrium condition requires that the prices are such that D(p*) 

= . Introducing aggregate excess demand function E(p) = D(p) , this 

equilibrium condition becomes E(p*) = 0. (If D(p) is a correspondence, the 

equilibrium condition is D(p*), that is 0 E(p*)). 

In a production economy (in which there are both consumers and 

producers) another element, aggregate supply function S(p), introduced in 

Paragraph 5.7, enters. Moreover, the demand function of the consumers 

takes into account (as will be indicated in Paragraph 11.6) the wealth 

generated by the profits from production. In equilibrium the following 

condition must hold D(p*) = S(p*)+  (or D(p*) S(p*)). Introducing the 

aggregate excess demand function E(p) = D(p) S(p) , the equilibrium 

condition becomes E(p*) = 0 (or 0 E(p*)). 

Equilibrium prices p* = (p1*,…, pk*) determine allocation of goods to 

all consumers and producers through the relationships xi* = di(p*) and yj* = 

sj(p*), for i = 1,..., n and j = 1,…, m, where n is the number of consumers 

and m is the number of producers. Competitive general equilibrium is 

represented by a vector of prices p* and by an allocation (x*, y*) = (x1*,…, 

xn*, y1*,…, ym*), that is (p*, x*, y*). According to competitive equilibrium 

condition, bundles of goods in the allocation need to correspond to choices 

made by (price-taking) agents at prices p* and choices need to be feasible. 

After this informal introduction, we will move to a formal introduction 

of general competitive equilibrium. We will distinguish between two cases: 

with and without free disposal assumption. Free disposal (introduced in 

Definition 8.3) assumes that each agent can dispose of any quantity of goods 

without incurring any cost.  
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11.2 Private ownership economy  

 

In this paragraph we define the private ownership economy (the 

centrally planned economy, which is another type of economy, will be 

mentioned in Paragraph 11.15). In the following paragraph we examine pure 

exchange competitive equilibria of a private ownership economy. 

Production equilibrium will be presented in Paragraph 11.8. 

Definition 11.1 (Private ownership economy) The economy is 

composed of consumers represented by their consumption sets and systems 

of preferences, producers (firms) represented by their production sets and 

resources (or available goods). In the economy with private ownership 

consumers own resources and firms.  

Therefore, a pure exchange economy with private ownership is 

represented by  = ( Xi, i , i, i =1,…, n), where Xi, i  is the system of 

preferences of the i-th consumer over his consumption set Xi  k
 (where  k  

represents the number of goods), i  k  are the resources in the endowment 

of the same consumer and n is the number of consumers.  

A production economy with private ownership is represented by  = 

( Xi, i , Yj, i, ij, i =1,…, n, j = 1,…, m), where, beyond already specified 

symbols, Yi  k
 is the production set of j-th firm, ij is i-th consumer’s 

share in firm j and m is the number of firms, so ij  0 for every i =1,…, n 

and j = 1,…, m and 1θ 1n
i ij

 for every j = 1,…, m. 

We note that the pure exchange economy is a particular type of the 

production economy. Production economy becomes pure exchange if Yi = 

{0} for every j = 1,…, m. 

 

 

11.3 Pure exchange competitive equilibrium  

 

The pure exchange competitive equilibrium is defined by the 

feasibility of the consumer’s choices in the economy  = ( Xi, i , i, i = 

1,…, n). It is therefore, necessary to define consumers’ choices and impose 

feasibility conditions. Each consumer is constrained to choose a bundle of 

goods that satisfies his budget set, defined by the prices, his endowment and 

by the possibility of free disposal, if it is the case. 

Definition 11.2 (Consumer’s budget set) Budget set (that indicates 

bundles of goods that can be achieved through exchange) of the i-th 

consumer, without free disposal, is 

( ) { : ω }i i i i iB p x X px p   
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with respect to a price vector p k
 (that includes the possibility that prices 

are negative)
1
, and in the presence of free disposal is 

Bi( p )={xi  Xi : xi ≤ xi’  for some xi’  k
  such that pxi’ = pωi} 

Proposition 11.1 If the prices are non negative, that is 0p , then the 

consumer’s budget set in the presence of free disposal (introduced in 

Definition 11.2) can be represented as 

( ) { : ω }i i i i iB p x X px p  

Proof. Consider the budget set, introduced in the Definition 11.2, 

Bi( p )={xi  Xi : xi ≤ xi’  for some xi’  k
  such that pxi’ = pωi}. With 

respect to this set, on one hand, if 0p  and )( pBx ii , then 

'i ipx px ωip , and, on the other hand, if 0p , xi  Xi and pxi ≤ pωi, 

then )( pBx ii  because there exits a 'i ix x  in k
 such that 'ipx ωip , 

Therefore, if 0p , then two specifications of ( )iB p  (introduced in 

Definition 11.2 and Proposition 11.1) coincide.    

Definition 11.3 (Consumer’s choice) The choice of the consumer 

represented by the regular system of preferences  Xi, i ,  where Xi  k
 , 

and by the endowment  i  k  , in the absence of free disposal, is a point 

that belongs to the set 

( ) { ( ) : '  for every ' ( )}i i i i i i i id p x B p x x x B p  

and in the presence of free disposal is a point belonging to the set 

          di( p ) = {xi  Bi( p ) : xi i xi’  for every xi’  Bi( p )} 

Definition 11.4 (Competitive equilibrium) Competitive equilibrium 

requires that choices are feasible. Therefore, in the absence of free disposal, 

equilibrium is represented by a vector of prices p* k
 and an allocation x* 

= (x1*,…, xn*) such that xi* ( *)id p  for every i = 1,…, n and 

n
i i

n
i ix 11 ω* . In presence of free disposal, such that xi* di(p*) for every 

i = 1,…, n and n
i i

n
i ix 11 ω* .   

Proposition 11.2 If a pure exchange economy satisfies the free 

disposal assumption and the consumers are altogether sufficiently greedy, 

then the equilibrium price vector is semipositive or seminegative, i.e. p* > 0 

or p* < 0. The “altogether sufficiently greedy” condition requires that global 

                                                 
1
 The one who buys the good at a negative price collects the money, and the one that 

sells it pays. Proposition 11.1 excludes goods with negative prices by assuming free 

disposal. The problem of negative prices arises for goods, sometimes called “bads”, that the 

agent would get rid of than buy. An example of “bad” is garbage. Instead of introducing 

such a “bad” we can introduce the service for its disposal that has positive price (equal, in 

the absolute value, to the price of the “bad”). This is what happens in reality. It is not 

possible, in general, to know whether a thing is “good” or “bad” before the equilibrium is 

determined. Moreover, if the economy allows for more than one equilibrium, it can happen 

that the same thing is “good” in one equilibrium and “bad” in the other. It follows that the 

possibility of negative prices cannot be avoided without introducing some particular 

assumptions. 
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satiation consumptions ix Xi (that is with  xi i ix   for every  xi Xi ) satisfy 

the condition 1 1ωn n
i ii ix , or that there is at least one consumer 

(assuming that the consumption sets are closed and have a lower bound) 

whose preferences satisfy the global non satiation condition (introduced in 

Paragraph 3.2) . 

          Proof. If the price vector p is neither semipositive nor seminegative, 

then either all the prices are equal to zero or there is at least one negative 

and one positive price. In both cases the budget set of each consumer 

coincides with the consumption set. That is if p  0 or p  0, then Bi(p) = 

{xi Xi : xi ≤ xi’  for some xi’ k
 such that pxi’ = pωi} = Xi. In fact, if all the 

prices are equal to zero, then the budget set and the consumption set trivially 

coincide. If there are at least one negative and one positive price, then for 

every xi Xi the consumer can buy a bundle of goods xi  such that pxi  = p i 

and xi   xi. If he buys enough of  the good with negative price he will be 

able to buy any quantity of goods with positive price. In this way, using free 

disposal, he can acquire any xi Xi. Therefore, if for the satiation 

consumptions ix  the relationship 1 1ωn n
i ii ix holds, then the feasibility 

condition (Definition 8.4) is not satisfied and the vector p is not an 

equilibrium price vector. By analogy, if a consumer has preferences that 

satisfy the global non satiation condition. In fact, assuming that his 

consumption set is closed and has a lower bound, the global non satiation 

condition implies that his consumption set is unbounded and he likes an 

infinite amount of at least one good. As a result, an unfeasible allocation  .  

Proposition 11.2 allows to consider only semipositive price vectors in 

the analysis of the equilibrium with free disposal. In fact, on one hand, the 

clause “if the consumers are altogether sufficiently greedy” must always be 

considered satisfied. It holds if there is at least one consumer with globally 

non satiated preferences. If there are no consumers who satisfy the global 

non satiation condition and consumers were not altogether sufficiently 

greedy, then the economy would be a paradise, since all the consumers 

could obtain their satiation consumption, and there would not be any reason 

to use economic analysis. On the other hand, since the consumers are 

interested only in exchange ratios (considering the prices in the budget set 

only through the condition ' ωi ipx p ) a seminegative price vector is 

equivalent to its opposite, for which we can limit to considering only 

semipositive vectors. 

 

 

11.4 Existence of competitive equilibrium in pure exchange 

economy with free disposal 

 

The existence of equilibrium means that the conditions that define it 

do not contradict one another, that is there exists a vector of prices that 

makes the choices of consumers feasible. The proof of the equilibrium 

existence requires some assumptions, for which we must qualify the 
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economy   = ( Xi, i , i, i =1,…, n) under examination. That is, the 

consumption sets Xi, systems of preferences Xi, i  and the endowments i. 

Many of these assumptions were defined in Chapter 3 and will be recalled 

here.   

Equilibrium existence is proved using fixed point theorems. The 

assumptions imposed on the economy  reflect assumptions required by 

these theorems. The two fixed point theorems relevant for the equilibrium 

with free disposal are the theorems of Brouwer and of Kakutani. 

Brouwer Theorem: If S  k
 is a non-empty, compact (that is closed 

and bounded) and convex set and f : S  S is a continuous function, then 

there exists a fixed point, that is there is a x* S such that x* = f (x*).
2
 

Kakutani Theorem: If S  k
 is a non-empty, compact and convex 

set and : S  S is an upper hemicontinuous correspondence with convex 

image-sets (x) for all x S, than there exists a fixed point, that is there exits 

a x* S such that x* (x*). 

Let us take under consideration the application of Brouwer theorem, 

which require that we deal with demand function (so we exclude demand 

correspondences in the following analysis). The continuity condition of 

Brouwer theorem requires that consumers’ aggregate demand function, that 

is 1( ) ( )n
i iD p d p , is continuous and so is the aggregate excess demand 

function 1( ) ( )n
i iE p e p , where ( ) ( ) ωi i ie p d p  and so 

( ) ( ) ΩE p D p  (excess demand functions were introduced in Paragraph 

4.5).  

                                                 
2
 The general proof of Brouwer theorem is not presented. The proof is, nevertheless, 

easy in one dimensional case, that is for k = 1, when set S is an interval.  

x*

x* f(x)

0 1 x

Figura 11.1

0

1

x*

x* f(x)

0 1 x

Figura 11.1

0

1

 
 

As shown in Figure 11.1, where S = [0,1], a continuous function f : [0,1] [0,1] has 

to have at least one point on the 45 degree line.  

Figure 11.1 
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This condition can be introduced directly, without justification on the 

choice analysis basis, or sufficient conditions that guarantee continuity can 

be, highlighted therein, examined. In such a case, we have that the aggregate 

demand function is continuous if it is continuous for every consumer and 

this continuity is guaranteed, defining ωi im p , by the Proposition 3.7, 

according to which demand function ( )id p  (and therefore also excess 

demand function ( )ie p ) is continuous if the budget set ( )iB p  

{ :i ix X ω }i ipx p  = { : 0}i i iz Z pz  (with {ω }i i iZ X ) is non-

empty, compact and convex, the correspondence :iB  k

iX  is continuous 

(and therefore also the correspondence :iB  k

iZ  is continuous), 

consumption set Xi is convex and the system of preferences Xi, i  is regular 

(that is complete and transitive), continuous and strictly convex.  

Since Xi is non-empty and ωi iX  (that is, Zi is non-empty and 

0 iZ ), we get that the set ( )iB p  is non-empty for every p. The 

compactness of the set ( )iB p  is guaranteed if Xi (and so Zi) is compact or if 

it is closed and has a lower bound (that is there exists a ix k
 such that 

i ix x  for every i ix X , as it is the case for example if Xi =  k ) and p >> 

0. The correspondence :iB  k

iX  (and therefore :iB  k

iZ ) is 

continuous (by the Proposition 3.1) if Xi is compact, convex and 

ωip min
i i

i
x X

px  (that is, 0 min
i i

i
z Z

pz ) for every p > 0.  

Continuity condition of the correspondence :iB  k

iX  can create 

problems. For example, consider the case represented in Figure 11.2, where 

iX 2

1 1 2 2{ : [0, ], [0, ]}i i i i ix x a x a  and 1
12

ω ( ,0)i ia . If we consider a 

sequence of price vectors that starts from p = (p1, p2) >> 0 and, by reducing 

only the price of the first good, tends to p  = (0, p2), we find out that the 

budget set Bi(p1, p2) = 1
1 1 2 2 1 12

{ : }i i i i ix X p x p x p a  becomes a smaller 

and smaller triangle, that is included in the previous sets. This triangle tends 

to the degenerate triangle 
1 0

lim
p

Bi(p1, p2) = 1
1 1 22

{ [0, ], 0}i i ix a x  represented 

by the segment 1
1 12

[0, ]i ix a  on the horizontal axis. Instead, in 

correspondence to the vector p  = (0, p2), the budget set is Bi(0, p2) = 

1 1 2{ [0, ], 0}i i ix a x , represented by the segment 1 1[0, ]i ix a  on the 

horizontal axis. The inequality 
1 0

lim
p

Bi(p1, p2)  Bi(0, p2) denotes 

discontinuity for the correspondence :iB  k

iX  in 'p ( 20, )p . The 

assumption which allows us to avoid this inconvenience is the one indicated 

above, that assumes that ω i  is an interior point to Xi (that is, 0 is interior to 

Zi), so that we have p ω i > min
i i

i
x X

px  (that is, 0 min
i i

i
z Z

pz ) for every p > 0. 
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Moreover, if the system of preferences Xi, i  is monotone (or locally 

nonsatiated), then the demand function ( )id p  satisfies the condition 

( ) ωi ip d p p  (and the function ( )ie p  satisfies the condition ( ) 0ip e p ) 

for every p > 0 (as indicated in the Proposition 3.4). As a result, we get the 

following proposition for the aggregate demand function (that derives from 

the Proposition 3.9). 

Proposition 11.3 (Walras Law) If the systems of preferences of all 

consumers Xi, i , where  i =1,…, n, are monotone, then for every p > 0 the 

relationship ( )p D p p  holds, where 1ωn
i i , that is ( ) 0p E p . 

Walras law implies that if p >> 0 and there is equilibrium for k 1 

goods (for example, we have ( )h hD p , that is ( ) 0hE p , for h = 1,…, 

k 1), then there is equilibrium also for the k-th good (that is, ( )k kD p , 

and ( ) 0kE p ). 

Then, recalling Proposition 3.8, according to which demand functions 

are homogenous of degree zero, that is (α ) ( )i id p d p  (and (α ) ( )i ie p e p ) 

for every  > 0, it is possible to normalize the prices. In fact, this property 

means that the choice of the consumer depends not on nominal prices but on 

exchange ratios (which are ratios between nominal prices), so it is possible 

modify the prices without changing ratios between one another and so 

without changing the demand of the consumers.
3
 In other words, the 

demand functions do not depend on k variables (the number of nominal 

prices) but on k 1 variables (the number of relative prices). So, for example, 

                                                 
3
 Independence from the nominal prices reflects the fact that we can freely choose 

the accounting unit of the nominal prices. This unit, since it is an arbitrary choice of the 

observer, cannot have any impact on the choices of the consumers. Just like the choice of 

the unit of measurement of the distance from earth to the sun does not influence the amount 

of time needed for the earth to revolve around the sun (that also depends on this distance). 

 

i1 xi1 

Figura 11.2 

Xi 

xi2 

i 

ai1 

ai2 

Figure 11.2 
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it is possible to describe prices by the following set (called k-1 dimensional 

simplex) 

                              
1

1{ : 1}k k k
h hS p p  

that determines all the possible relative prices of goods.
4
 The Figure 11.3 

and  11.4 indicate the simplexes, respectively, for  k = 2  and for  k = 3. 

 

We note that the simplex is a non-empty, compact and convex set. 

It is now possible to establish existence of equilibrium with the 

following proposition, that considers aggregate excess demand function  
1: kE S Z , where 1

n
i iZ Z . 

Proposition 11.4 (Existence of the competitive equilibrium in pure 

exchange economy with free disposal) There exists a 1* kp S  for which  

( *) 0E p  if 1: kE S Z  (where Z is a compact subset of k
) is a 

continuous function such that ( ) 0p E p  for every 1kp S .   

Proof. Let us introduce the function 1 1: k kG S  defined by the 

relationships 

1

max{0, ( )}
( )

1 max{0, ( )}

h h
h k

h h

p E p
G p

E p
 ,                                          h = 1,…, k 

We note that this function, which has domain 1kS , has 1kS  as 

codomain  (since ( ) [0,1]hG p  for every h = 1,…, k and 1 ( ) 1k
h hG p  for 

                                                 

4
 The indicated normalization considers a price 

1

'
h

h k

h h

p
p

p
 in the place of price 

h
p  for every h = 1,…, k. With this normalization, the cost of a bundle of goods that 

consists of one unit of each good is equal to 1 (that is, since the price of the bundle x is px, 

then the price of the bundle x = (1, 1,…, 1) is 1

k

h h
p , which is necessarily positive since p 

is semipositive, so that we can normalize prices by choosing 1

k

h h
p =1). Other possible 

normalization can be obtained assuming that the price of a good is equal to 1 (called for this 

reason numeraire) under condition that in the equilibrium this price is not equal to 0. 

Another normalization, that can also be used also when negative prices are not excluded, 

considers the set 
2

1{ : 1}
k k

h h
p p .  

1 p1 

p2 

1 

Figura 11.3 

S 
1
 

p1 p2 

p3 
1 

1 1 

S 
2 

Figura 11.4 Figure 11.3 Figure 11.4 
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every 1kp S ) and is continuous since the function 1: kE S Z  is 

continuous. Since, moreover, 1kS  is a non-empty, compact and convex set, 

then we can apply Brouwer theorem and we find that there exists a 
1* kp S  such that  * ( *)p G p . In relationship to this  p* we get  

1

* max{0, ( *)}
*

1 max{0, ( *)}

h h
h k

h h

p E p
p

E p
 ,                                             h = 1,…, k 

Multiplying by 1( *) (1 max{0, ( *)})k
hh hE p E p  both of the parts of this 

relationship, subtracting from both sides * ( *)h hp E p  and summing the 

equalities obtained in this way with respect to h we get 

1 1 1* ( *) max{0, ( *)} ( *) max{0, ( *)}k k k
h h hh h h h hp E p E p E p E p  

and so, using Walras law,  

10 ( *) max{0, ( *)}k
h h hE p E p  

This relationship, given ( *) max{0, ( *)} 0h hE p E p  for every h = 1,…, k, 

implies ( *) max{0, ( *)} 0h hE p E p , i.e. ( *) 0hE p  for every h = 1,…, k.   

Propositions 11.3 and 11.4 imply the following proposition, according 

to which free goods, that is goods that are consumed in smaller quantity than 

is available, have zero prices. That is, if  ( *) 0hE p , then * 0hp . 

Proposition 11.5 If the assumptions of Proposition 11.4 hold, then  

( *) 0hE p  implies * 0hp  and * 0hp  implies ( *) 0hE p . 

Proof. The conditions * ( *) 0p E p , ( *) 0E p  and 1* kp S  imply 

* ( *) 0h hp E p  for every h = 1,…, k, from which the proposition derives.  

It is interesting to see under what conditions there are no free goods, 

that is ( *) 0E p .  

There are no free goods and, moreover, we have p* >> 0 if there are 

some consumers with strongly monotone preferences and sufficiently large 

consumption sets. In fact, zero price would encourage these consumers to 

demand very high quantity of the good examined, equal to the maximum 

amount allowed by their consumption sets, and the total quantity demanded 

would be higher than the quantity available.  

A condition (called desirability condition), which is weaker than 

strong monotonicity, is introduced by the following Definition 11.5. It 

ensures ( *) 0hE p  and ph* > 0 for a generic h-th good.  

Definition 11.5 (Desirability condition) A good is desirable if ( )hE p  

is positive for every 
1kp S  with 0hp .  

As a consequence * 0hp   if h-th good is desirable. In fact, 0hp  

excludes, if the desirability condition holds, that the feasibility condition 

( ) 0hE p  be satisfied.  
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Note that the assumption of strong monotonicity of each consumer’s 

preferences not only excludes that consumers use the possibility of free 

disposal (i.e. i ipx p  for ( )i ix d p ), but also requires (if consumption 

sets are sufficiently large) that the equilibrium allocation satisfies feasibility 

condition 1 1ωn n
i ii ix  with equality (since 1 1 ωn n

i ii ipx p  implies 

1 1ωn n
i ii ix  for p >> 0). As a result, if the preferences are strongly 

monotone, competitive equilibrium with free disposal coincides with 

equilibrium without free disposal (these equilibria were introduced in 

Definition 11.4).   

The assumptions of Proposition 11.4 are sufficient but not necessary 

conditions for equilibrium existence (just like the conditions in the Brouwer 

theorem). A competitive equilibrium can therefore exist even if these 

conditions are not satisfied. (Also the conditions from the Proposition 3.7 

are sufficient but not necessary for the continuity of individual demand 

functions). This reduces the relevance of the existence theorems. In fact, the 

logical reconstructions of economic reality operated by the general 

equilibrium theory (recall Paragraph 1.2) finds in the existence theorems the 

proof of the logical consistency of the theory, that is of feasibility of  

intentional choices. However, the logical truth of the theory, given that 

economics is an empirical science, is only a necessary condition in order for 

the theory to represent reality. That is logical truth is required by empirical 

truth but does not imply it. In other words, a logically false (i.e. 

contradictory) theory cannot represent reality, but a logically consistent 

theory may be empirically false. If the purpose of the theory is a logical and 

empirically true reconstruction of some economic reality, then the 

conditions of the existence theorems are sufficient in order to warrant a 

necessary condition. They are therefore non decisive conditions. In other 

words, it can happen that assumptions (of continuity of the aggregate excess 

function, etc.) are empirically satisfied but equilibria that they give rise to 

do not fit reality. On the contrary, it can happen that these conditions are not 

satisfied and nevertheless there exists an equilibrium that is a very good 

representation of reality. (If assumptions were necessary conditions, then 

their empirical falsification would imply both that the equilibrium 

relationships are contradictory and, consequently, that equilibrium is 

empirically false). Overall, even with this limitation, the proof of the 

existence of the competitive equilibrium was a great progress in economics 

as it allowed us to assess logical consistency of the general equilibrium 

theory under sufficiently weak conditions (essentially boiling down to the 

continuity of the aggregate excess demand function). 

Competitive equilibria of a pure exchange economy can be computed 

by determining first the choices of the consumers (as shown in Paragraph 

3.8, defining ωi im p ) and then imposing the feasibility condition 

1 1ωn n
i ii ix . 
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Exercise 11.1 Recall Exercise 4.1 where we considered, in an economy with two 

goods, an agent with a Cobb-Douglas utility function 
1

1 2

a a

u x x , where a (0,1). Assume 

that there are n consumers and that they have a Cobb-Douglas utility function, so that the  i-

th consumer is represented by a utility function 
1

1 2

a a

i i

i i

iu x x  and an endowment 

1 2
ω (ω ,ω )

i i i
 >> 0. As a result we get individual demand functions 

             

1

1 2 2 1

1 2 1

2 1 1 2

(ω ω )
( , )

(1 )(ω ω )

i i i

i

i i i

a p p
d p p

a p p

 ,                                                    1,...,i n  

and aggregate demand function 
1

1 1 2 2 1

1 2 1

1 2 1 1 2

(ω ω )
( , )

(1 )(ω ω )

n

i i i i

n

i i i i

a p p
D p p

a p p

 

Keeping in mind that the preferences are strongly monotone so the feasibility condition can 

be satisfied as an equality, we obtain the following conditions 
1

1 11 2 2 1 1
(ω ω ) ωn n

i ii i i i
a p p ,                 

1

1 12 1 1 2 2
(1 )(ω ω ) ωn n

i ii i i i
a p p  

not independent (by Walras law). Each of them determines the equilibrium exchange ratio  

1 12

11 2

(1 ω*

* ω

)n

i i

n

i i i

iap

p a
 

Equilibrium allocation is determined by plugging this value in individual demand functions. 

Now we assume, keeping other assumptions the same, that n = 2, a2 = 1 (that is, u2 = 

x21), 1
ω (0,1)  and 

2
ω (2,1) . The demand of the first consumer is then 

1

11 1 2 1
x a p p  for 

every 
1

p S  and 
12 1

1x a  for every 
1

p S  with 
2

0p , while 
12

x  for 
2

0p . 

The demand of the second consumer is 
1

21 2 1
2x p p  for every 

1
p S  and 

22
0x  for 

every 
1

p S  with 
2

0p , while 
22

[0, )x  (that is any point in the interval) for 
2

0p . 

It is possible to show that these choices are not feasible. In fact if 
2

0p , feasibility 

requires 
1 1

1 2 1 2 1
2 2a p p p p , that is 

1

1 2 1
(1 ) 0a p p , condition that is never satisfied 

for
2

0p . If 
2

0p , the choices are not feasible because the first consumer would 

demand an infinite quantity of the second good. In such a case no competitive equilibrium 

exists. 
 

 

11.5 A graphical representation of pure exchange equilibrium with 

two goods and two agents: the Edgeworth-Pareto box diagram 

 

The Edgeworth-Pareto box diagram (introduced in Paragraph 8.3 and 

Figure 8.1) provides a representation of economy  = ( X1, 1 , X2, 2 , 1, 

2). In what follows we assume that X1 = X2 =  2
, 1, 2  2

 and that the 

systems of preferences of both consumers are regular, continuous and 

strongly monotone.   

An economy of this type is a poor representation of the theory of 

general competitive equilibrium. On one hand, it is not very credible to 

assume that the two agents (only one buyer and only one seller of each of 

the two goods) are price-takers. (However, in this respect we could imagine 
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that there are two types of agent and that the number of agents is equal for 

the two types and sufficiently large). On the other hand, the presence of only 

two goods (so only one exchange ratio) cannot generate that 

interdependence between markets which justifies general equilibrium versus 

partial equilibrium analysis. Nevertheless, the Edgeworth-Pareto box 

diagram is an instrument that is a very useful tool to understand many 

aspects of the general equilibrium.  

In the Edgeworth-Pareto box in Figure 11.5 the initial allocation   = 

( 1, 2) is represented by a point. Figure 11.5 contains all elements of 

economy  = ( X1, 1 , X2, 2 , 1, 2). Now we will try to find competitive 

equilibria. 

 

Since preferences are strongly monotone, the the two consumers choose, 

whatever the prices are, bundles of goods that satisfy budget constraints 

with equality. That is for any choice xi, we have p1xi1+p2xi2 = p1 i1+p2 i2, 

for i = 1, 2. This relationship is represented in the diagram by a line passing 

through point  with a negative slope, the absolute value of which is equal 

to the exchange ratio p1/p2. In the diagram, as shown in Figure 11.6, the 

budget constraint lines of both consumers coincide. The difference comes 

from the fact that the budget line of the first consumer is read with respect to 

the origin O1, and the one of the second consumer with respect to O2. The 

choice of each consumer with respect to the possible values of the exchange 

ratio is depicted by price-consumption curve (introduced in Paragraph 3.8 

and in Figure 3.16), which is a representation of the Walrasian demand 

function. 

Feasibility condition, in presence of free disposal, requires that x1h+x2h 

 h (where h = 1h+ 2h), for h = 1, 2. With strongly monotone 

preferences, then, as shown in Paragraph 11.4 right after Proposition 11.5, 

there are no free goods and feasibility condition is satisfied with equality, 

O1 x11 

x12 

x22 

x21 O2 

11 

12 22 

21 

 

1 = 11+ 21 

2 = 12+ 22 

Figura 11.5 
Figure 11.5 
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that is x1h+x2h = h, for h = 1, 2. As a result, feasible allocations are points in 

the set 2

1 2 1 2{ , : Ω}C x x x x  that coincides in Edgeworth-Pareto box 

with the set of points in the rectangle.  

 

Competitive equilibrium requires that we find the bundles of goods 

that are, on one hand, chosen, that is belong to the price-consumption curves 

(represented in Figure 11.6 by dash curves), and, on the other hand, give rise 

to a feasible allocation, that is to bundles of goods represented for the two 

individuals by the same point in Edgeworth-Pareto box. As a consequence 

we get competitive equilibrium allocation only if it is represented by a point 

that belongs to both price-consumption curves. The further condition 

required for competitive equilibrium is that the choices of the consumers are 

determined by the same exchange ratio. This condition is satisfied by all 

points that price-consumption curves have in common, excepting possibly 

point . (If preferences are convex, then point  belongs to the both price-

consumption curves. However, it does not normally represent a competitive 

equilibrium allocation, because normally the two consumers have different 

marginal rates substitution at that point. It would be a competitive 

equilibrium allocation if they were equal). The points belonging to both 

price-consumption curves (except for point ) represent choices with 

respect to the same exchange ratio, because they are on the same budget 

constraint line. We note that the indifference curves of the two individuals 

never intersect in the equilibrium point (they are tangent to each other if 

they are smooth). In Figure 11.6 we represent an economy with a unique 

competitive equilibrium allocation x* = (x1*, x2*). It is possible to draw 

cases without competitive equilibria (for example if preferences are not 

convex) or exhibiting multiple or infinite equilibria (for example if goods 

are perfect complements for both consumers). 

O2 

 

Figura 11.6 

x22* 

22 

11 O1 

12 

x12* 

21 x21* 

x11* 

x* 

p1*/p2* 
Figure 11.6 
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From the Figure 11.6 we obtain a competitive equilibrium allocation 

x* = (x1*, x2*) that is efficient (Pareto optimal), as illustrated in Figure 8.1. 

In fact the indifference curves of the agents are tangent to each other in the 

point that represents competitive allocation, since they are both tangent in 

this point to the budget constraint line. This property, according to which 

competitive equilibrium allocations are efficient is remarkable. It is called 

“first welfare theorem” and will be presented for the general case of n 

agents and k goods in Paragraph 11.6. In this paragraph we will also present 

the “second welfare theorem”, that is illustrated by the following property in 

Edgeworth-Pareto box. Take any efficient allocation (that is a point on the 

curve that is depicted in Figure 8.1). We find that this allocation can be 

obtained through competitive equilibrium if the preferences are convex (on 

the top of being continuous and strictly monotone), with appropriate 

endowment allocation. The Figure 11.7 depicts it with respect to two 

efficient allocations x* and x̂ . Efficient allocation x* is a competitive 

allocation if the initial endowment is * (or some other point on the line 

tangent to indifference curves at x*); the efficient allocation x̂  is a 

competitive allocation if the initial endowments is ω̂  (or some other point 

on the tangent line). The slope of the line tangent to the indifference curves 

in the efficient allocation determines the exchange ratio of the 

corresponding competitive equilibrium.  

 

 

In Figure 11.8 we show some non-competitive equilibria, always for an 

economy with two consumers and two goods. Point x* represents a 

competitive equilibrium allocation. (This is a point in which indifference 

curves of the two consumers are both tangent to the line that links this point 

to the endowment allocation point. Also the price-consumption curves go 

through this point. However in the figure, only the curve for consumer 1 is 

drawn). Point xm represents the equilibrium allocation when consumer 2 is 

O1 x11 

x12 

x22 

x21 O2 

1 

2 

Figura 11.7 

PO 

x* 

. 
* 

 ̂
x

.  ̂ω

Figure 11.7 



 16 

monopolist, that is the allocation that is obtained when this individual can 

choose the exchange ratio p2/p1 (this allocation is on the price-consumption 

curve of consumer 1, the one that is more convenient for consumer 2). Point 

xmd represents the allocation when there is monopoly with first-degree price 

discrimination, that is the equilibrium allocation that is obtained when the 

consumer 1 can only accept or reject the allocation proposed by consumer 2 

(this allocation is the best point for consumer 2 on the indifference curve of 

consumer 1 determined by endowment 1 ). Note: i) allocations x* and xmd 

are efficient and allocation xm is inefficient; ii) individual 2 prefers 

allocation xmd to xm and xm to x* (vice versa for consumer 1); iii) the quantity 

of good 2 sold by individual 2 in the monopoly case is smaller than in the 

competitive case and it is sold at a higher price, that is (p2/p1)m > (p2/p1)*, in 

accordance with the partial equilibrium theorem indicated in §10.8. Instead, 

contrary to what was obtained in the analysis of partial equilibrium 

(§10.10), the sold quantity of good 2 is not necessarily higher in the 

monopoly with first-degree price discrimination than in the pure monopoly 

and not necessarily  its marginal price is smaller.  

 

 

11.6 Efficiency of competitive equilibrium allocations in a pure 

exchange economy: the two welfare theorems 

 

The competitive equilibrium in pure exchange economy with free 

disposal is represented by a price vector p* 1kS  and an allocation x* = 

(x1*,…, xn*) such that xi* di(p*) for every i = 1,…, n (as indicated in 

Definition 11.4). We will now examine the relationship between allocations 

obtained in such a way and the efficient allocations (introduced in Paragraph 

8.2) for a pure exchange economy. There are two principal propositions with 

O1 x11 

x12 

x22 

x21 O2 

1 

2 

Figura 11.8 

PO 

x* 

.  

 

 

xm 

(p2/p1)m 

 
(p2/p1)* 

O1 x11 

x12 

x22 

x21 O2 

1 

2 

 

PO 

x* 

.  

 

 

xm 

xmd 

(p2/p1)m 

 
(p2/p1)* 

O1 x11 

x12 

x22 

x21 O2 
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2 
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PO 

x* 

.  

 

 

xm 

xmd 

(p2/p1)m 

 
(p2/p1)* 
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regard to this topic. The first one states the conditions under which the 

competitive equilibrium allocation is efficient. The second one states the 

conditions under which the efficient allocation can be sustained by a 

competitive equilibrium. 

Proposition 11.6 (The First Welfare Theorem) If (x*, p*) is a 

competitive equilibrium with free disposal for the economy (without 

externalities)  = ( Xi, i , i, i =1,…, n), then the allocation x* is weakly 

efficient.  

Proof. Let’s consider an equivalent proposition, according to which if 

an allocation is not weakly efficient, it cannot be a competitive equilibrium. 

If x is not a weakly efficient allocation, then there exists another allocation 

x  that is feasible, that is 1 1' ωn n

i i i ix , such that 'i i ix x  for every i = 

1,…, n. As a result, for every p 1kS  we get 1 1' ωn n

i i i ipx p  and so there 

is at least one i = 1,…, n for which ' ωi ipx p . However, if there is, for 

every p 1kS , some i = 1,…, n for which ' ωi ipx p  and 'i i ix x , then 

( )i ix d p  and so allocation x cannot constitute a competitive equilibrium.  

The preceding proposition, which is very general, requires some 

additional assumptions (other than absence of externalities) for strong 

efficiency of the competitive equilibrium. For example, competitive 

equilibrium is strongly efficient when the preferences of all the consumers 

are continuous and strongly monotone. In such a case, a weakly efficient 

allocation is, by Proposition 8.3, also strongly efficient.
5
  

Nevertheless, it is possible to reformulate the first welfare theorem 

with respect to the strong efficiency without requiring the preferences to be 

continuous and strongly monotone. It is enough to assume that they are 

locally nonsatiated.  

Proposition 11.7 If  (x*, p*)  is a competitive equilibrium (with free 

disposal) of an economy (without externalities)   = ( Xi, i , i, i =1,…, n), 

with regular (that is, complete and transitive) and locally nonsatiated 

preferences for all consumers, then the allocation  x*  is strongly efficient. 

Proof. Assume, by contradiction, that (x*, p*) is a competitive 

equilibrium but the allocation x* is not strongly efficient. Then there exists 

an allocation x that is feasible, 1 1ω
n n

i i i ix ,  such that ix  *i ix  for every i 

= 1,…, n and *j j jx x  for at least one j = 1,…, n. Consequently, since 

*jx ( *)jd p , we have for this consumer * *ωj jp x p  and for all the 

other consumers * *ωi ip x p  (otherwise, if * *ωi ip x p , because of  

locally nonsatiated preferences, there would exist in the neighborhood of ix  

a point 'ix  such that 'i iix x  *i ix  and * ' *ωi ip x p , that is in 

                                                 
5
 Moreover, we keep in mind that this equivalence requires that the consumption sets 

are sufficiently large, for instance Xi =  k
 for every i = 1,…, n. 
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contradiction to *ix ( *)id p ). As a result, 1 1* *ωn n

i i i ip x p , that is in 

contradiction to the feasibility condition 1 1ω
n n

i i i ix  .   

The following example considers an economy that satisfies the 

assumptions from Proposition 11.6, but not the ones from Proposition 11.7 

(that require the preferences to be locally nonsatiated). In this example there 

is a competitive equilibrium that presents a weakly but not strongly efficient 

allocation. 

The example, represented in Edgeworth-Pareto box diagram in Figure 

11.9, considers an economy with two consumers and two goods. The first 

consumer has not locally nonsatiated preferences (indicated by the thick 

indifference curve). Allocation  x*  (coinciding with the endowment ) is a 

competitive equilibrium allocation, where the prices are represented by the 

slope of the budget constraint shown on the figure. This allocation is 

weakly, but not strongly, efficient, because there are other feasible 

allocations, like allocation x̂ , that are preferred by the second consumer to 

x* and leave the first consumer indifferent. 

 

    

 

Proposition 11.6 requires that the first order conditions for equilibrium 

imply the first order conditions for efficiency (presented in the Paragraph 

8.2), that is that the marginal rates of substitution are equal for each pair of 

goods for all the consumers. This is immediately verified, because the first 

order conditions of the choice of each consumer require the equality of 

every marginal rate of substitution to the exchange ratio of the two 

corresponding goods and competitive equilibrium requires that the prices 

are the same for all the consumers. 

The main assumption in the Proposition 11.6 is the absence of 

externalities. If there are externalities, then, in general, we have a market 

failure (that is, the allocation generated in equilibrium is inefficient). In such 

a case, in order to reach efficiency we must introduce corrections, which can 

Figura 11.9 

.  ̂
x

 

ω *x

O1 

O2 

. 

Figure 11.9 
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have the form of taxes or subsidies on prices for the goods that create 

externalities or also, if the externalities are produced by the firms, the form 

of mergers. These aspects are analyzed in Paragraph  ….  Another 

assumption, set out by the Proposition 11.6, is the common knowledge of 

the characteristics of the goods exchanged. If there is asymmetric 

information (for example some agents discriminate between goods because 

they have information on their quality that other agents have not), then the 

competitive equilibrium allocation can be inefficient. This problem (known 

as adverse selection) is analyzed in Paragraph … 

The Second Welfare Theorem looks at the possibility of arriving at 

some assigned efficient allocation through competitive equilibrium (with an 

appropriate endowment allocation). This possibility requires rather 

restrictive conditions, among which the most important is the convexity of 

the preferences. Among the possible formulations of this theorem, one of the 

simplest ones is the following. 

Proposition 11.8 (Second Welfare Theorem) Let x* be an efficient 

allocation in the economy (without externalities) ( Xi, i , , i = 1,…, n). If, 

for every i = 1,…, n, the system of preferences Xi, i , where Xi =  k , is 

regular (that is complete and transitive), continuous, strongly monotone
6
 and 

convex and xi* >> 0, than there exists a vector p* 1kS  for which (x*, p*) 

is a competitive equilibrium for an economy  = ( Xi, i , i, i = 1,…, n), 

where the endowments  i  are such that 1

n

i i =  and  p* i = p*xi* for 

every i = 1,…, n (for example if i = xi* for every i = 1,…, n ).  

Proof. The proof is rather lengthy so we are going to break it up in the 

following steps.  

a) We consider, for every consumer, the set of bundles that are 

preferred to xi*, that is Pi(xi*) = {xi  k : xi i xi* }, and their sum P(x*) = 

1

n

i
Pi(xi*) = {X  k : 

1

n

i
xi = X and xi i xi* for every i = 1,…, n}. All these 

sets are convex, because the preferences of the consumers are convex and 

the sum of convex sets is a convex set. 

b) Since allocation x* is efficient, we have that X* P(x*), where X* = 

1

n

i
xi*. Therefore, since X* k

 does not belong to P(x*)  k
, we can 

apply the separating hyperplane theorem,
7
 according to which there exists a 

                                                 
6
 The assumption that requires strongly monotone preferences can be substituted by 

the weaker assumption that preferences are locally nonsatiated. In such a case the proof has 

to be slightly modified.  
7
 This theorem belongs to the family of separating hyperplane theorems. The 

theorem relevant for the examined proposition states that if a set P  k
 is convex and a 

point x* k
  does not belong to it, that is x* P, then there exists a vector a  0 such that ax 

 ax* for every x P. In Figure 11.10 we represent a case in which P is an open convex set 

and x* belongs to its border. 
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vector a  0 such that aX  aX* for every X P(x*). On the other hand, since 

the preferences are strongly monotone, the efficient allocation x* satisfies 

the condition 1 *n

i ix . As a consequence aX* = a  . 

c) Let’s consider an allocation (xi*+ 1
n eh) 1

n

i
, where eh is a vector with 

all the components equal to zero except the h-th component which is equal 

to 1. Since the preferences of all the consumers are strongly monotone we 

have (xi*+ 1
n eh) i xi* for all i = 1,…, n and, so, having (X*+eh) = 

1

n

i
(xi*+ 1

n eh) we get (X*+eh) P(x*) for every h = 1,…, k. As a result, 

applying the inequality from the separating hyperplane theorem, we get 

a(X*+eh)  aX*, that is ah  0 for every h = 1,…, k. Thus, since a  0, we 

have a > 0. At this point we define p* = 
1

1
k

h ha
a. We. therefore, get that 

p* 1kS  and p*X  p*X* for every X P(x*).  

d) Now we will prove, for every  i = 1,…, n, that if xi i xi*, then p*xi 

 p*xi*. If xi i xi*, since preferences are continuous and Xi =  k , then there 

exists a t (0, 1) such that (1  t) xi i xi*. Let’s consider an allocation x , 

with xi  = (1  t) xi and xb  = xb*+
1

t

n
xi for every b  i and b = 1,…, n. Since 

the preferences are strongly monotone we get xi  i xi* for every i = 1,…, n. 

Then we have 'X 1

n

i
xi P(x*) and so by the separating hyperplane 

theorem p* 'X  p*X*, that is p* 
1

n

i
xi   p* 

1

n

i
xi*. Keeping in mind the 

definition of the allocation  x , we obtain 

                     p* (1  t) xi  + p* 
1,

n

b b i
( xb* +

1

t

n
xi)  p* 

1

n

b
xb*  

and as a result p*xi  p*xi*. 

e) It is possible to reinforce the preceding relation by proving, for 

every i = 1,…, n, that if xi i xi*, then p*xi > p*xi*. In fact, as already shown, 

if xi i xi*, since preferences are continuous and Xi =  k ,  then there exists a 

t (0, 1) such that (1  t) xi i xi*. Then, applying the relationship determined 

                                                                                                                                                         

x*

P

Figure 11.10

x*

P

Figure 11.10
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in the previous step, we get  p*(1  t) xi  p*xi*, that is  p*xi  
1

1 t

 p*xi*. 

Since p* 1kS  and xi* >> 0 by assumption, it is p*xi* > 0, and so the 

previous inequality requires p*xi > p*xi*.  

f) From the previous steps we get that for every i = 1,…, n, if xi i xi*, 

then p*xi > p*xi*. This implies that if p*xi   p*xi*, then xi i xi* and so xi* 

i xi for every xi {xi Xi: p*xi  p*xi*}. As a consequence, for every i = 

1,…, n, that xi* di(p*, p* i) for every i such that p* i = p*xi*. Moreover, 

because x* is a feasible (since efficient) allocation, we get that (x*, p*) is a 

competitive equilibrium. (We finally note that this result and the assumption 

that the preferences are strongly monotone imply also that p* >> 0).          

In Figures 11.11 and 11.12 we present Edgeworth-Pareto diagrams 

corresponding to two cases in which efficient allocation cannot be obtained 

through a competitive equilibrium. In Figure 11.11 the reason is that 

preferences are not convex. In Figure 11.12 the bundle of goods x1* is not 

positive. (Figure 11.12 represents a situation where 
1 11 12u x x  and u2 = 

min{x21, x22/2}, with x1* = (1/2, 0) and x2* = (1/2, 1)).  

 

 

 

The second welfare theorem demonstrates that it is possible to obtain every 

efficient allocation (and so the allocation with maximum social welfare) 

with an appropriate distribution of resources in the competitive economy. 

This possibility is one of the fundaments of the policy for the reduction of 

inequality among individuals. Imposing taxes on the exchange introduces a 

distortion, because due to the resulting gap between the sell and buy price 

the marginal rates of substitution will not be equalized, which is a condition 

for efficiency. Introducing wealth transfers between the consumers does not 

create this problem. Nevertheless, in order to achieve a specific efficient 

O1 

O2 

x* 

Figure 11.11 

x* O1 

O2 

Figure 11.12 
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allocation the transfers have to be such that, under competitive equilibrium, 

they give rise to the desired allocation. This requires that the authority that 

determines these transfers needs to know all the data about the economy  = 

( Xi, i , i, i =1,…, n). Lack of this knowledge is one of the main limits of 

the redistribution policy.  

 

 

11.7 Competitive equilibrium and social welfare maximum 

 

The two welfare theorems regard the relationship between competitive 

equilibrium and efficiency. Now, it is worthwhile to examine the 

relationship between the competitive equilibrium and social welfare 

maxima. Until now, we studied the relationship between efficiency and 

social welfare maxima in Paragraph 8.5. We found out that the allocation 

that maximizes social welfare function is efficient (Proposition 8.9) and that 

every efficient allocation maximizes at least one social welfare function 

(Proposition 8.10). We will now study whether the allocations that 

maximize social welfare can be obtained by competitive equilibrium and 

also if there exists a social welfare function that would be maximized by the 

allocation obtained under competitive equilibrium.  

Proposition 11.9 With respect to the economy (without externalities) 

( Xi, i , , i = 1,…, n), let x* = 1( *)n

i ix  be an allocation that maximizes a 

given social welfare function W(u1(x1),…, un(xn)) over the set of feasible 

allocations 1{( ) : ,n

FD i i i iC x x X  1 Ω}n
i ix . If, for every i = 1,…, n, the 

system of preferences Xi, i , where Xi =  k , is regular (that is complete 

and transitive), continuous, strongly monotone and convex and xi* >> 0, 

then there exists a vector p* 1kS  for which (x*, p*) is a competitive 

equilibrium of the economy  = ( Xi, i , i, i = 1,…, n), where the 

endowments i are such that 1

n

i i =  and p* i = p*xi* for every i = 1,…, 

n (for example, if i = xi* for every i = 1,…, n ).  

Proof. The proof follows directly from Propositions 8.9 and 11.8.     

Proposition 11.10 If (x*, p*) is a competitive equilibrium, with free 

disposal, of the economy (without externalities)  = ( Xi, i , i, i =1,…, n), 

then the competitive allocation x* maximizes at least one social welfare 

function. In particular, if preferences can be represented with utility 

functions ( )i iu x  that are concave and monotone for every i = 1,…, n, then 

the competitive allocation x* maximizes the social welfare function 

1

1
( )

λ

n

i i i

i

u x  over the set 1 11{( ) : ,  ω }n n n
i iFD i i i i i iC x x X x , where λ i  

is the indirect marginal utility of wealth of the i-th consumer, that is 

λ D *( *, *ω )
ii m i iu p p  for every i = 1,…, n. 
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Proof. The first part of the proposition follows directly from the 

Propositions 8.10 and 11.6. We obtain the second part by proving that 

maximizing the proposed social welfare function leads exactly to the 

competitive equilibrium allocation. In fact, the Lagrangian for the problem 

1

1
max ( )

λFD

n

i i i
x C

i

u x , is  

L(x1,…, xn, 1,…, k) = 1

1
( )

λ

n

i i i

i

u x  + 1

k

h h 1 1( ω )n n

i ih i ihx  

We obtain the following first order conditions  

1
D ( ) μ

λ ihx i i h

i

u x   for every  i = 1,…, n  and every  h = 1,…, k , 

1 1ω 0n n

i ih i ihx    for every  h = 1,…, k. 

The solution (x, ) of these equations coincides with the competitive 

equilibrium (x*, p*) because they coincide with the first order conditions of 

the competitive equilibrium, since λ D *( *, *ω )
ii m i iu p p  for every i = 

1,…, n. In fact, the first order conditions of the competitive equilibrium are 

the equations D ( ) λ
ihx i i i hu x p , 1 1ω 0n n

i ih i ihx , for every i = 1,…, n and 

h = 1,…, k, and the budget constraints pxi = p i, for every i = 1,…, n, which 

imply λ D *( *, *ω )
ii m i iu p p  for every i = 1,…, n. The assumption that 

utility functions are concave, on one hand, implies that the second order 

conditions are satisfied, and, on the other hand, that the first order 

conditions determine the global maximum of social welfare.  

The social welfare function 1

1
( )

λ

n

i i i

i

W u x  introduced in the 

previous proposition is a weighted average of the utilities of all the 

consumers. Since the utilities are concave, the weight 
1

λ i

 associated to the 

generic i-th consumer is larger the larger his wealth is.
8
 In this way, the 

social welfare function keeps track of the differences in wealth between the 

consumers in order to generate, through its maximization, an allocation in 

which the consumers with larger wealth obtain richer bundles of goods. 

 

 

                                                 

8
 In fact, concavity implies that 

2
λ

D * ( *, * ω ) 0
i i

i

m m i i

i

u p p
m

. This inequality is a 

result of the relationship obtained in the proof of the Proposition 3.13, that is d * = 
2 1

2 1 2 1

(D ) 1
λ * d ( * d d )

(D ) (D )

T

T

T T

p u
p x p m

p u p p u p
, from which 

2 1

λ* 1

(D )
T

m p u p
, 

which is positive if the utility function is concave. Notice that we require that the indirect 

utility function is convex with respect to wealth and not only quasi-convex (as guaranteed 

by Proposition 3.10). 
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11.8 Competitive equilibrium existence in production economy 

with free disposal 

 

A private ownership production economy is represented by  = ( Xi, 

i , Yj, i, ij, i =1,…, n, j = 1,…, m), just like in Paragraph 11.1.  

Profits belong to the consumers and depend for every consumer on the 

amount of shares he owns in every firm. Therefore, if there is free disposal, 

the budget constraint of the i-th consumer is  

1( ,(π ) ) { : 'm

i j j i i i iB p x X x x for some  'ix such that 1' ω θ π }m
ji i ij jpx p  

This set is a non decreasing correspondence with respect to profits 

(that is, π ' πj j  for  j = 1,…, m  implies 
1 1( ,(π ') ) ( ,(π ) )m m

i j j i j jB p B p ). 

Then, none of the consumers is against profit maximization, because 

choosing from a larger set cannot lead to a less preferred choice. Therefore, 

the assumption that firms maximize profit is justified.  

Proposition 11.2, that holds also for production economies (if 0 Yj for 

every j = 1,…, m, as it is easily proved), implies that we can consider only 

semipositive price vectors in the analysis of the competitive equilibrium 

with free disposal. This implication can also be obtained from the free 

disposal condition for production. If free disposal condition holds for at 

least one firm, then there exists a j such that k

j jY Y , by which if  

0 Yj, then k

jY . If there was a good with a negative price, then 

maximizing profit of this firm would lead to an infinite demand for this 

good and an infinitely large profit, and as a result equilibrium inexistence. 

(We note that this reasoning holds if the set Yj is not bounded). Therefore, 

with a semipositive price vector p > 0, the above budget set of i-the 

consumer becomes 

           11( ,(π ) ) { :  ω θ π }m m
ji j j i i i i jij

B p x X px p . 

The choice of every firm is derived from its profit maximization over 

its production set and it is represented by a supply function ( )js p . The 

choice of every consumer is derived from maximization of his utility over 

his budget set. The feasibility condition, in presence of free disposal, 

requires 1 1 1ω
n m n
i j ii j ix y . Therefore, equilibrium is described by an 

allocation and a vector of prices, that is by (
1 1( *) ,( *) ,n m

i i j jx y p*), such that 

* : * * '  for every 'j j j j j j jy y Y p y p y y Y ,                        1,..., ,j m   

1 1* ( *,( * *) ) : '  for every ' ( *,( * *) ) ,m m

i i i j j i i i i i j jx x B p p y x x x B p p y  

 1,..., ,i n  

1 1 1
* *

n m n

i j ii j i
x y . 

If the aggregate excess demand function 

1 1( ) ( ( ) ω ) ( )n m
i ji i jE p d p s p  
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where 1kp S  and, for every j = 1,…, m and i = 1,…, n,  

( ) : '  for every 'j j j j j j js p y Y py py y Y , 

( ) max
j j

j j
y Y

p py , 

1 1( ) ( ,( ( )) ) : '  for every ' ( ,( ( )) ) ,m m

i i i j j i i i i i j jd p x B p p x x x B p p  

satisfies conditions stated in Proposition 11.4, then the last one ensures that 

the equilibrium exists. 

Among the conditions required by Proposition 11.4, homogeneity of 

degree zero of the aggregate excess demand function and Walras law are 

surely satisfied. In fact, supply functions, whenever they are defined, are 

homogenous of degree zero (Proposition 5.3), the profit functions are 

homogenous of degree one (Proposition 5.3) and demand functions are, as a 

consequence, homogenous of degree zero (applying Proposition 3.8). 

Therefore, with the conditions imposed by Proposition 11.3, Walras law  

holds. The most problematic condition from Proposition 11.4, especially in 

the case of production, is the one that requires aggregate excess demand 

functions to be single-valued (that is to be proper functions and not 

correspondences) and, moreover, continuous. In fact, we must introduce 

strict convexity of the production set in order to have continuous supply 

function that takes only one value. Now, strict convexity excludes constant 

returns to scale (and allows only for decreasing returns to scale, that is yj is 

in the interior of Yj if 0 Yj, yj Yj and (0,1)).  

If we want to prove equilibrium existence for an economy with 

production that exhibits non increasing (that is, also constant) returns to 

scale, then we cannot use Brouwer theorem (that we used to prove 

Proposition 11.4) and we have to use Kakutani theorem instead. 

Let 1 1 {Ω}n m
i ji jZ X Y  is a compact and convex subset of k . 

The proof of competitive equilibrium existence can be obtained (as in 

Proposition 11.11) if the aggregate excess demand correspondence 
1: kE S Z  is upper hemicontinuous and such that the set E(p) is non-

empty and convex. Moreover, budget constraints imply that ( ) 0pE p  for 

every 
1kp S  (where ( ) 0pE p  means that 0pz  for every ( )z E p ), 

i.e. that the so-called weak Walras law holds (whilst Walras law requires 

pE(p) = 0)..  

The set Z is compact if the sets Xi, for i = 1,…, n, and Yj, for j = 1,…, 

m are compact. (Equilibrium existence can be proved also if these sets are 

not bounded. An interested reader can find the proof in Debreu, 1959, pp. 

83-88. Moreover, boundedness of the sets can be justified if we recall that 

the quantity of the goods is in any case bounded and assume that the agents 

know it and reflect this knowledge in the corresponding consumption and 

production sets).  
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Having 1 1( ) ( ( ) ω ) ( )n m
i ji i jE p d p s p , the correspondence  

1: kE S Z  is upper hemicontinuous and the set E(p) is non-empty and 

convex for every 1kp S  if these characteristics are shared by the 

correspondences 1: k

i id S X , for every  i = 1,…, n , and 1: ks S Y  (we 

can refer directly to the aggregate supply correspondence one as shown in 

Paragraph 5.7). Now, for every i = 1,…, n, the correspondence 
1: k

i id S X  is upper hemicontinuous and the set di(p) is non-empty and 

convex for every 1kp S  if the set  Xi  is non-empty, compact and convex,  

1ω θ π min
i i

m
ji j iij x X

p px  for every 1kp S  (this condition is satisfied if i 

is in the interior of Xi and 0 Yj for every j = 1,…, m) and the system of 

preferences Xi, i  is regular, continuous and weakly convex (as we deduce 

from Propositions 3.3, 3.5 and 3.7). The correspondence 
1: ks S Y  is 

upper hemicontinuous and the set s(p) non-empty and convex for every 
1kp S  if the set Y is non-empty, compact and convex (as we can deduce 

from Proposition 5.2, keeping in mind that these conditions allow to 

determine s(p) for every 1kp S ). Finally, since 
1( ) ( ,( ) )m

i i j jd p B p  for 

every 1,...,i n  and 11( ,(π ) ) { :  ω θ π }m m
ji j j i i i i jij

B p x X px p , then 

1 1 ω θ π ω θm m
j ji i j i jij ij

px p p py  for every ( )i ix d p , ( )j jy s p  

and 1kp S . The sum of these inequalities with respect to 1,...,i n  leads 

to ( ) 0pE p  for every 1kp S  (i.e. 0pz  for every ( )z E p ), which is 

the weak Walras law. 

The assumptions that we considered are sufficient in order for the 

aggregate excess demand function  1: kE S Z to be upper 

hemicontinuous and for the set E(p) to be non-empty, convex and such that 

( ) 0pE p  for every 
1kp S . Therefore :

 9
  

a) for every consumer 1,...,i n , the consumption set Xi is non-empty, 

compact and convex, the system of preferences Xi, i  is regular, 

continuous, weakly convex and i is a point in the interior of  Xi;  

b) for the producers, Y is non-empty, compact and convex, such that 

0kY , with  0 Yj  for every 1,...,j m . 

                                                 
9 Debreu (1959, pp. 82-88) proves equilibrium existence without assuming that 

consumption and production sets are bounded. In this case the following assumptions are 

required, for the consumers. Xi is non-empty, closed, bounded from below and convex. Xi, 

i  is regular, continuous, convex and without global satiation. i is an interior point in Xi 

for every 1,...,i n . The following assumptions are required for the producers. Y is non-

empty, closed and convex, such that ( ) 0Y Y  and 
k

Y , with 0
j

Y  for every  

j = 1,…, m . 
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Now, we can introduce Proposition 11.11 that proves the existence of 

competitive equilibrium in production economy with free disposal. 

Proposition 11.11 (Competitive equilibrium existence in production 

economy with free disposal). If the aggregate excess demand 

correspondence 1: kE S Z , where 1 1 {Ω}n m
i ji jZ X Y  is a 

compact and convex subset of k , is upper hemicontinuous and such that 

the set E(p) is non-empty, convex and satisfies the weak Walras law 

( ) 0pE p  for every 1kp S , then there exists a 1* kp S  for which 

( *) ( )kE p .  

Proof. Let’s introduce the correspondence 1: kP Z S , with 

1
( ) arg max

kp S
P z pz . Since the set 1kS  is non-empty and compact, P(z) is 

non-empty and convex for every z Z  and the correspondence 
1: kP Z S  is upper hemicontinuous (substantially, by Weirstrass and 

“maximum” theorems shown in Proposition 3.6 and 3.7 and corresponding 

comments). Let’s now consider the correspondence 1 1: k kS Z Z S  

defined by  ( , ) ( ) ( )p z E p P z . The set  1kS Z  (that coincides with the 

set 1kZ S ) is non-empty, compact and convex because Z and 1kS  are 

non-empty, compact and convex. The set ( , )p z  is non-empty and convex 

for every 1( , ) kp z S Z  because the sets E(p) for every 1kp S  and P(z) 

for every z Z are non-empty and convex. The correspondence 
1 1: k kS Z Z S  is upper hemicontinuous because the 

correspondences 1: kE S Z  and 1: kP Z S  are upper hemicontinuous. 

Then we can apply Kakutani theorem. We obtain that there exists a fixed 

point, that is a pair ( *, *)p z  such that ( *, *) ( *, *)p z p z  and so 

* ( *)p P z  and * ( *)z E p . The first condition implies * * *pz p z  for 

every 
1kp S . The second one implies, by the weak Walras law, * * 0p z . 

Therefore, we get * 0pz  for every 
1kp S . Considering the vertexes of 

the simplex 1kS , that is points with ph = 1 and pr = 0 for every 1,...,r k  

with r  h, and this for every 1,...,h k , we find out that zh*  0 for every h. 

Therefore * kz  and, since * ( *)z E p , we get that there exists a 

1* kp S  for which  ( *) ( )kE p .     

In order to calculate the competitive equilibrium of a production 

economy we first determine the choices of the firms (as shown in Paragraph 

5.4) and the consumers (as shown in Paragraph 3.8, with 

1ω θ πm
ji i jij

m p , where  π ( ) max
j j

j j j
y Y

ps p py  for every 1,...,j m ) 

and then impose the feasibility condition 
1 1 1

* *
n m n

i j ii j i
x y .  
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11.9 A graphical representation of production equilibrium with 

two goods, one consumer and one producer  

 

Production economies with one consumer, one producer and two 

goods can be represented graphically. (An economy with only one consumer 

resembles the case of Robinson Crusoe and is often called with this name). 

Now, this economy, as well as the pure exchange economy with two 

consumers and two goods (represented by Edgeworth-Pareto box diagram) 

is per se of a little relevance. In fact, in addition to the arguments provided 

in Paragraph 11.5, we assume that there is now only one individual, who is 

on one hand a consumer and on the other a producer, so that he sells, as 

consumer, a good to himself as producer and buys, as consumer, the other 

good from himself as producer. Moreover, he always acts as a price-taker. 

Also this time, the diagram will turn out to be a very useful instrument for 

understanding many aspects of general equilibrium of a production 

economy. 

The examined economy is  = ( X,  , Y, ). We note that it is 

necessarily  = 1. We assume 
2X , 

2
 and 2Y  non-empty, 

closed and, moreover, with 0 Y  (possibility to take no action), 
2Y Y  (free disposal) and ( ) 0Y Y  (irreversibility). (For these 

assumptions see Paragraph 5.1. Note that free disposal and irreversibility 

imply that there are no semipositive vectors in Y). 

 

 

  

 

x1 

x2 

y1 

y2 

Op 

Oc 1 

 
2π*/ *p

2 

x1* 

x2* 

y1* 

y2* 

Figura 11.13 

Y 1 2*/ *p p

Figure 11.13 
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Figure 11.13 depicts the proposed diagram. There are two systems of 

Cartesian axes with Oc being the origin for the consumer and Op being the 

origin for the producer. This point represents the endowment  in the 

consumer system. With respect to the origins, the horizontal  axis represents 

the quantity of the first good for the consumer (denoted with variable x1) 

and for the producer (with a variable y1, which is negative when, as in the 

figure, the first good is an input). The vertical axis indicates, analogously, 

the quantity of the second good. The figure shows all the data about the 

economy under consideration: indifference curves, which map, with respect 

to the origin Oc, consumer’s preferences (in this figure they are regular, 

continuous and strongly monotone), his endowment (in the figure, the 

endowment is composed of a positive quantity of both goods) and, with 

respect to the origin Op, the production set (in the figure it is strictly convex 

in the part that is relevant for the production choice, by which there are 

decreasing returns to scale).  

The producer chooses  the production level that maximizes profit (like 

in Figure 5.14) and the realized profit belongs to the consumer. Then, for 

every exchange ratio p1/p2, consumer’s budget line, given by equation  

1 1
1 2 1 2

2 2 2

π
ω ω

p p
x x

p p p
, goes through point ( 1 2

2

π
ω ,ω

p
) and has 

slope equal to  p1/p2. Equilibrium occurs if the exchange ratio p1*/p2* 

determines a producer’s choice * arg max *
y Y

y p y  (with corresponding 

profit * = p*y*) and a consumer’s choice 
( *, *)

* arg max ( )
x B p y

x u x  that satisfy 

the feasibility condition x*  y*+  (in our figure, where preferences are 

strongly monotone so there are no free goods, this condition is equivalent to  

x* = y*+ ). By construction, the allocations (x, y) that satisfy x = y+  are 

represented by the same point (of course x and  are measured with respect 

to Oc while y with respect to Op). In Figure 11.13 also the competitive 

equilibrium allocation is shown. 

We note that the competitive equilibrium determines the same 

allocation that an individual would reach if instead of separating himself 

into a consumer and a producer he would choose the allocation directly. 

This choice solves the problem 
,

max ( )
x y

u x  subject to x X, y Y and x  y+ . 

So it is an efficient allocation. 

The reader can try to represent the case in which the production set 

exhibits constant returns to scale (like in Figure 5.1).  

If the returns to scale are first increasing and then decreasing (like in 

Figure 5.8) then the competitive equilibrium may not exist (like in Figure 

11.14), while an efficient allocation that is a solution to the problem 

,
max ( )

x y
u x  subject to x X, y Y and x  y+  exists. In Figure 11.14, there is 

an efficient allocation that is described by consumption x* and production 

y* (represented by the same point because this allocation is feasible). 
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However, with respect to the exchange ratio that is implicit in this allocation 

(equal to the common slope of the production set boundary in y* and the 

indifference curve in x*) the choice of the producer is inaction, that is ŷ  = 0 

(note, that, with this exchange ratio, the profit in y* is negative) and the 

choice of the consumer is indicated by x̂ , but this allocation is not feasible 

(in fact, in this figure, the points x̂  and ŷ  do not coincide). The firm 

chooses to produce only if the exchange ratio p1/p2 is sufficiently low, equal 

at least to the slope of the line (dashed in the figure) that determines 

production y . However, with this exchange ratio, the consumption choice is 

x  and also the allocation x , y  is unfeasible. With lower exchange ratios, 

firm’s choice moves to the left, where the marginal rates of substitution of 

the consumer are higher (thus, to the left of y , the indifference curves are 

not tangent to the boundary of the production set, but intersect it), and such 

choices are not feasible. Therefore, there is no competitive equilibrium for 

the case represented in Figure 11.14. 

x1
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y1

y2

Op

Oc
1

2

Figure 11.14
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y

ŷ
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y2
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2

Figure 11.14
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 x

y

ŷ

*, *x y

 

 

 

11.10 Competitive equilibrium in production economy and its 

efficiency 

All the remarks about the pure exchange equilibrium stated in 

Paragraphs 11.6 and 11.7 can be extended to production economy. Naturally, 

we have to take into account production sets. The propositions introduced in 

Figure 11.14 
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Paragraphs 11.6 and 11.7 for a pure exchange economy are described by the 

following propositions for a production economy. 

Proposition 11.12 (First welfare theorem) If ( *, *, *)x y p , where 

1* ( *)n

i ix x  and 
1* ( *)m

j jy y , is a competitive equilibrium with free 

disposal for an economy (without externalities)  = ( Xi, i , Yj, i, ij, i = 

1,…, n, j = 1,…, m), then the allocation ( *, *)x y  is weakly efficient. 

Proof. Consider the equivalent proposition according to which if an 

allocation is not weakly efficient, then it cannot belong to any competitive 

equilibrium. If ( , )x y  is not a weakly efficient allocation, then there exists 

another feasible allocation (x , y ), that is with 
1 1 1' ω 'n n m

i i i i j jx y , such 

that 'i i ix x  for every i = 1,…, n. As a result, for every 1kp S  we get 

1 1 1' ω 'n n m

i i i i j jpx p py  and, thus, 
1 1 1' ω *n n m

i i i i j jpx p py  since 

* max
j j

j j
y Y

py py . Therefore, there is at least one i for which 

1' ω θ *m

i i j ij jpx p py . But, if there is, for every 
1kp S , some i for 

which 1' ω θ max
j j

m

i i j ij j
y Y

px p py  and 'i i ix x , then ( )i ix d p  and so it is 

impossible that allocation ( , )x y  belongs to a competitive equilibrium.     

Proposition 11.13 If ( *, *, *)x y p  is a competitive equilibrium (with 

free disposal) of an economy (without externalities)  = ( Xi, i , Yj, i, ij, i 

= 1,…, n, j = 1,…, m), and consumers have regular (that is, complete and 

transitive) and locally non satiated preferences, then the allocation ( *, *)x y  

is strongly efficient.  

Proof. Suppose that ( *, *, *)x y p  is a competitive equilibrium but 

allocation ( *, *)x y  is not strongly efficient. Then there exists a feasible 

allocation ( , )x y , so with 
1 1 1ωn n m

i i i i j jx y , such that *i i ix x  for 

every 1,...,i n  and *s s sx x  for at least one s. As a consequence, since  

* ( *)s sx d p , it must be true for this consumer that 

1* *ω θ * *m

s s j sj jp x p p y , while for all the other consumers  

1* *ω θ * *m

i i j ij jp x p p y  (otherwise, if 
1* *ω θ * *m

i i j ij jp x p p y , 

since the preferences are locally non satiated, there would exist a 

' *i i i i ix x x  in the neighborhood of ix  such that 

1* *ω θ * *' m

i i j ij jp x p p y , which is in contradiction with the assumed 

* ( *)i ix d p ). As a result 
1 1 1* *ω * *n n m

i i i i j jp x p p y , that is  

1 1 1 1 1*ω * * * *ω *n m n n m

i i j j i i i i j jp p y p x p p y , in contradiction 

to the condition 
1 1* * *m m

j j j jp y p y  required by the condition of profit 

maximization.   
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Proposition 11.14 (Second welfare theorem) Let ( *, *)x y  be an 

efficient allocation of an economy (without externalities)   = ( Xi, i , Yj, , 

i = 1,…, n, j = 1,…, m). If the aggregate production set 
1

m

j jY Y  is convex 

and, for every i = 1,…, n, the consumption set Xi is convex and bounded 

from below, the system of preferences Xi, i  is regular (complete and 

transitive), continuous, strongly monotone
10

 and convex, and xi* is an 

interior point in Xi, then there exists a vector p* 1kS  for which 

( *, *, *)x y p  is a competitive equilibrium for an economy  = ( Xi, i , Yj, i, 

ij, i = 1,…, n, j = 1,…, m) where the endowments i and ij are such that 

1ω
n

i i  and 
1*(ω *) * *m

i j ij j ip y p x  for every i = 1,…, n.  

Proof. The proof is analogous to the proof of Proposition 11.8 and we 

will follow a similar procedure whenever possible. 

a) Let’s consider, for every consumer, the sets of consumptions 

preferred to xi*, that is ( *) : *i i i i i i iP x x X x x , and their sum 

1 1 1( *) ( *) :  and * for every 1,...,n n n

i i i i i i i i i iP x P x X X X x x x i n . 

All these sets are convex, since preferences are convex and the sum of  

convex sets is a convex set. 

b) The allocation ( *, *)x y  is efficient, so not only * ( *)X P x , where 

1* *n

i iX x , but also the sets P(x*) and G = Y+{ } are disjoint. Therefore 

we can apply the separating hyperplane theorem,
11

 according to which there 

                                                 
10

 The assumption of strongly monotone preferences could be substituted with a 

weaker assumption that requires the preferences to be locally nonsatiated. In such a case, 

the proof has to be slightly modified.  
11

 There are different formalizations of the separating hyperplane theorem. The one 

relevant for the examined proposition says that if P,G  k
 is a pair of convex disjoint sets, 

then there exists a vector a  0 such that ax  ag for every pair x,g with x P and g G. In 

Figure 11.15 we depict a case in which P is a convex and open set and G is a closed set.  

 

P
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G

P
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G

 



 33 

exists a vector a  0 and a scalar r such that aX  r  ag for every X P(x*) 

and every g G. 

c) For every 1,...,i n , since xi* is a point in the interior of Xi and the 

preferences are continuous and monotone, there is a xi i xi* in each ball 

with center xi*. Therefore, for any allocation 1( )n

i ix  composed of those 

points, having 1 ( *)n

i ix P x , we get  1

n

i ia x r . Considering balls with 

smaller and smaller radius, approaching zero, we obtain, by continuity, that 

1 *n

i ia x r . On the other hand, since preferences are strongly monotone, an 

efficient allocation ( *, *)x y  satisfies the condition 
1 1* *n m

i i j jx y . 

Then, since 
1 *m

j jy G , it follows that 
1 1( *) *m n

j j i ir a y a x . 

As a consequence 1* *n

i iaX a x r .  

d) Let’s consider the allocation 1
1( * )n

i h in
x e , where eh is a vector with 

all components equal to zero except h-th which is equal to 1. Since the 

preferences are strongly monotone we get 1( * ) *i h i in
x e x  for every 

1,...,i n . Therefore, since 1
1* ( * )n

h i i hn
X e x e , then * ( *)hX e P x  

for every 1,...,h k . Then, keeping in mind that aX* = r and applying the 

inequality from the separating hyperplane theorem we get 

( * ) *ha X e r aX , that is ah  0 for every 1,...,h k . At this point, we 

define 
1

1
*

k

h h

p a
a

 and obtain that 1* kp S  and  
1

1
* *

k

h h

p X r p g
a

 

for every ( *)X P x  and every g G, with 
1

1
* *

k

h h

r p X
a

. 

e) The relationships * * *p X p g  for every g G, where G = Y+{ }, 

and 
1 1* * *n m

i i j jX x y  imply that 
1 1* * *m m

j j j jp y p y  for every  

1

m

j jy Y . It means that 
1

1 1* * max *
m
j j

m m

j j j j
y Y

p y p y , that is, keeping in 

mind Proposition 5.15, that * * max *
j j

j j
y Y

p y p y , so * ( *)j jy s p  for every 

1,...,j m . 

 f) We now prove, for every 1,...,i n , that if *i i ix x  then 

* * *i ip x p x . If *i i ix x , since the preferences are convex we obtain that 

' *i i ix x  for every ' (1 ) *i i ix x x  with (0,1] . Let’s take 'ix  

sufficiently close to *ix  so to have a point in the interior of Xi (by 

assumption, *ix  is a point in the interior of Xi). Then, since preferences are 

continuous, there exists a " 'i ix x  around 'ix  in iX  such that " *i i ix x . 

Let’s take under consideration the consumption allocation "x , where "ix  is 

already introduced and 1
1

" * ( ' ")b b i in
x x x x  for every b i  and 

1,...,b n . Since the preferences are monotone we get " *i i ix x  for every 
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1,...,i n . Then we obtain 1" " ( *)n

i iX x P x  and so, by separating 

hyperplane theorem, * " * *p X r p X , that is 1 1* " * *n n

i i i ip x p x .  

Keeping in mind the definition of allocation "x  we obtain 

     1
1, 11

* " * ( * ( ' ")) * *n n

i b b i b i i b bn
p x p x x x p x       

and from this, as a result, * ' * *i ip x p x . Thus, keeping in mind that 

' (1 ) *i i ix x x , we have * * *i ip x p x , that is * * *i ip x p x  

since (0,1] . 

g) We can strengthen the preceding relationship by proving that if 

*i i ix x  then * * *i ip x p x  (not simply * * *i ip x p x ). In fact, as 

already noted, if *i i ix x , since the preferences are convex and continuous 

and *ix  is a point in the interior of iX , there exists a " 'i ix x , where 

' (1 ) *i i ix x x  with (0,1] , such that " *i i ix x . Then applying the 

relationship established in the preceding step, we get * " * *i ip x p x  and 

so, * ' * " * *i i ip x p x p x . Having ' (1 ) *i i ix x x  with (0,1] , 

the inequality * ' * *i ip x p x  is equivalent to * * *i ip x p x . 

h) From the preceding step, we get that if *i i ix x  then 

* * *i ip x p x  for every  1,...,i n . This implies that if * * *i ip x p x  then 

*i i ix x  and so it is *i i ix x  for every : * * *i i i i ix x X p x p x . 

Therefore, since 
1* * *( *)m

i i j ij jp x p y  by the definition of the 

endowments i  and ij , we get 
1* ( *, *( *))m

i i i j ij jx d p p y  for every 

1,...,i n .  

i) Results obtained in steps e) and h), that is * ( *)j jy s p  for every 

1,...,j m  and 
1* ( *, *( *))m

i i i j ij jx d p p y  for every 1,...,i n , prove, 

if we keep in mind that an efficient allocation satisfies the feasibility 

condition, that ( *, *, *)x y p  is a competitive equilibrium. (Finally, note that 

this result and the assumption that the preferences are strongly monotone 

imply also that * 0p ).     

The following propositions describe the relationship between the 

allocations that belong to a competitive equilibrium and those that maximize 

social welfare.  

Proposition 11.15 Let’s consider an economy (without externalities)  

( Xi, i , Yj, , i =1,…, n, j = 1,…, m). Let  (x*, y*) , where 1* ( *)n

i ix x  and 

1* ( *)m

j jy y , be an allocation that maximizes a social welfare function 

1 1( ( ),..., ( ))n nW u x u x  over the set of feasible allocations   

1 11 1{(( ) ,( ) ) : , , Ω}n m n m
i jFD i i j i i i j j i jC x y x X y Y x y . If the 

aggregate production set Y = 
1

m

j jY  is convex and, for every 1,...,i n , the 

consumption set Xi is convex and bounded from below, the system of 
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preferences  Xi, i   is regular (that is complete and transitive), continuous, 

strongly monotone and convex and xi* is a point in the interior of Xi, then 

there exists a vector p* 1kS  for which ( *, *, *)x y p  is a competitive 

equilibrium with free disposal for an economy  = ( Xi, i , Yj, i, ij, i = 

1,…, n, j = 1,…, m), where the endowments i and ij are such that 

1ω
n

i i  and 
1*(ω *) * *m

i j ij j ip y p x  for every 1,...,i n .  

Proof. The proof follows directly from Propositions 8.9 and 11.14.   

Proposition 11.16 If ( *, *, *)x y p  is a competitive equilibrium with 

free disposal for an economy (without externalities)  = ( Xi, i , Yj, i, ij, i 

= 1,…, n, j = 1,…, m), then the allocation (x*, y*)  maximizes at least one 

social welfare function. In particular, if the preferences of the consumers can 

be represented with concave and monotone utility functions and the 

aggregate production set is convex, this allocation maximizes the social 

welfare function 1

1
( )

λ

n

i i i

i

u x  over the set 
1 1{(( ) ,( ) ) :n m

FD i i j iC x y ,i ix X  

,j jy Y 1 1 Ω}n m
i ji jx y , where λ i  is the marginal indirect utility of 

wealth for the  i-th consumer, that is 
1λ D *( *, *ω θ * *)

i

m

i m i i j ij ju p p p y , 

for every 1,...,i n .  

Proof. The proof is analogous to the one in Proposition 11.10. The 

first part of the proposition is a direct consequence of Propositions 8.10 and 

11.12. For the second part we can show that the maximization of the 

proposed social welfare function leads to the competitive equilibrium 

allocation. In fact, introducing for the problem 1
( , )

1
max ( )

λFD

n

i i i
x y C

i

u x  the 

Lagrangian function 

L(x1,…, xn, y1,…, ym, 1,…, k, 1,…, m ) =  

                      1

1
( )

λ

n

i i i

i

u x  + 
1

k

h h 1 1 1( ω )n m n

i ih j jh i ihy x  
1

m

j j Fj(yj), 

we get the following first order conditions  

1
D ( ) μ

λ ihx i i h

i

u x  for every i = 1,…, n and every h = 1,…, k,  

h = j D ( )
jhy j jF y  for every j = 1,…, m and every h = 1,…, k, 

1 1 1ω 0n m n

i ih j jh i ihy x  for every h = 1,…, k, 

Fj(yj) = 0  for every j = 1,…, m. 

The solution (x, y, , ) of these conditions is coherent with competitive 

equilibrium ( *, *, *)x y p , since they coincide with the first order conditions 

for competitive equilibrium having 
1λ D *( *, *ω θ * *)

i

m

i m i i j ij ju p p p y  

for every 1,...,i n . In fact, the competitive equilibrium conditions, which 

are composed of the relationships D ( ) λ
ihx i i i hu x p ,  ph = j D ( )

jhy j jF y  and  
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1 1 1ω 0n m n

i ih j jh i ihy x  for every 1,...,i n , 1,...,j m  and 1,...,h k ,  

and also of budget constraints 
1θ

m

i i j ij jpx p py  for every 1,...,i n , 

require 
1λ D *( *, *ω θ * *) D *( *, * *)

i i

m

i m i i j ij j m i iu p p p y u p p x  for 

every 1,...,i n , so that budget constraints are implicitly assumed also by 

the problem 1
( , )

1
max ( )

λFD

n

i i i
x y C

i

u x . Finally, concavity of  utility functions and 

convexity of the aggregate consumption sets, on one hand, imply that 

second order conditions are satisfied and, on the other hand, that the first 

order conditions determine the global social welfare maximum.   

 

 

11.11 Equilibrium with free entry and the non-substitution 

theorem  

 

In this paragraph the main goal is to determine the conditions that 

yield the prices of products independent of the preferences and the 

endowments, that is dependent only on the production sets. In this way we 

will be able to establish the conditions that yield on one hand that the 

classical theory of prices holds (according to which prices are not only equal 

to production costs but are uniquely determined by them, which are in turn 

determined only by technology) and, on the other hand, that would put 

forward the Leontief input-output model that uses constant production 

coefficients (as shown in footnote 15 in Chapter 5). This goal can be 

achieved if we suppose, together with other assumptions, that the industry 

production sets exhibit constant returns to scale. This property is satisfied if 

we allow for free entry. In fact in § 5.8 (with Definition 5.6) we introduced 

the industry production set with free entry and proved (in Proposition 5.16) 

that it exhibits constant returns to scale. 

For example, in an economy with an industry that has only one input 

and only one output and the production set as depicted in Figure 5.1, the 

competitive equilibrium (if it exists and the examined industry is active) 

requires that the exchange ratio between the two goods (input and output of 

the industry) is determined only by the transformation function (which 

represents the relevant part of the boundary of the production set and is of 

the type y2+ay1  = 0): we have p1*/p2* = a independently of the demand and 

supply functions by consumers.  

We, therefore, examine the properties of the competitive equilibrium 

in an economy without joint production (that is with only one good 

produced by each industry) that is characterized by free entry for every 

industry. For this economy, since production exhibits constant returns to 

scale and results in zero profits, the prices of the goods produced (in 

positive quantity) are equal to their average production costs. The following 

Proposition 11.17 introduces conditions that establish that these equalities 

are sufficient for price determination.  
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We thus examine the competitive equilibrium with free disposal 

( *, *, *)x y p  of a production economy with free entry  = ( Xi, i , ˆ
jY , i, ij, 

i = 1,…, n, j = 1,…, m), where every industry production set ˆ k

jY  has 

only one output (and every set has a different output) and exhibits constant 

returns to scale. In this equilibrium, the revenue of every industry is equal to 

its (minimal) production cost that is proportional (having constant returns to 

scale) to the quantity produced. To be precise, listing the goods in a way 

that the first m goods are the products, we have * ( *, *)j jjy q , with 

*jq  and 1* k

j
, and 

ξ* * *( *, *)
jj j j jp q c p q  

ξ*( *) *
jj jAC p q  

for every 1,...,j m . Then 
ξ* *( *) 

jj jp AC p  if * 0jq , where *jp  is 

the price of the j-th industry output, 
ξ * 

j
p  is a vector of prices of its input 

and *jAC  is the average cost, which is a strongly monotone function of the 

prices of inputs used in positive amount. 

Proposition 11.17 (The Non-substitution Theorem) If there is no joint 

production, if the production sets have constant returns to scale, if there is 

only one input which is primary (i.e. a non-produced good) and if the 

primary good is necessary in every production (that is, every industry uses a 

positive quantity of the primary good), then the prices of the products are 

determined only by their costs. That is, listing the goods in a way that the 

first m goods are the products and the (m+1)-th good is the primary good, 

then the system of equations 1 1*( ,..., , )j j m mp AC p p p , with 1,...,j m ,  

admits a unique solution. 

Proof. First of all, if we choose the primary good as numeraire, that is 

1 1mp , since it is used in every production, then all the average production 

costs are positive, so pj > 0 for 1,...,j m . Suppose, now, that the system 

1 1*( ,..., , )j j m mp AC p p p , 1,...,j m , admits two solutions: the 

competitive equilibrium solution p* and some other solution p'. Consider the 

number 
'

α max
*

j

j
j

p

p
. If  > 1, then there is a good h, with h {1,…, m}, 

for which α * *'h h hp p p , while for the other products we have 

' α *j jp p . If   1, then, since p*  p', there is a good h  for which we 

have ' β * *h h hp p p , with β
'

min 1
*

j

j
j

p

p
, and ' β *j jp p  for the 

other products. The following reasoning, done for the case  > 1, applies to 

both cases, with some modification. Keeping in mind that it must be 

1 1* *( *,..., *, )h h m mp AC p p p  and 1 1' *( ',..., ', )h h m mp AC p p p , that the 

cost function is homogenous of degree 1, by which 

1 1α * *(α *,...,α *,α )h h m mp AC p p p , and that it is strongly monotone with 

respect to the prices of employed inputs, by which 
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1 1*(α *,...,α *,α )h m mAC p p p > 1 1*( ',..., ', )h m mAC p p p  since α * 'j jp p , for 

1,...,j m , and 1 1α m mp p , we get the relationships 

         1 1' α * α *( *,..., *, )h h h m mp p AC p p p 1 1*(α *,...,α *,α )h m mAC p p p  

                                                             1 1*( ',..., ', ) 'h m m hAC p p p p ,  

that reveal a contradiction. (If   1, then, having  < 1, we get 

1 1' β * β *( *,..., *, )h h h m mp p AC p p p 1 1*(β *,...,β *,β )h m mAC p p p  

                                                                    1 1 '*( ',..., ', )h m m hAC p p p p ).  

As a consequence, there cannot be two solutions for the system of equations 

1 1*( ,..., , )j j m mp AC p p p , with 1,...,j m , which therefore has only one 

solution.     

The preceding proposition requires very strong assumptions, among 

them that there is only one input which is not produced. Usually, this input 

represents labor. This assumption requires that in the economy there is only 

one type of labor and that natural resources are not used. Nevertheless, the 

result that the prices of products depend only on the production costs and so 

are independent of the endowments and the consumption preferences is 

relevant also for the following reason.  

In the case under consideration, basing on the Shephard’s lemma 

(Proposition 5.22), we find out that production coefficients ajh (that denote, 

for every 1,...,j m  and 1,..., 1h m , the quantity of input  h  necessary to 

produce one unit of output j) are independent of the consumers demand, too. 

In fact, Shephard’s lemma requires that 
11*( ,..., , , )m m j

h

j

jh

c p p p q

p
x , for 

every 1,...,j m  and 1,..., 1h m . So having constant returns to scale we 

get 
11*( ,..., , )m mjh

jh

j h

jAC p p px
a

q p
 for 1,...,j m  and 1,..., 1h m . 

Since the average cost function is independent of the consumers choices, 

also the production coefficients ajh do not depend on them. Then, also if the 

(constant returns to scale) technology is not such that the coefficients are 

constant (that is, with inputs that are perfect complements), the choice of the 

production coefficients is independent of the demand for products. In other 

words, change in the demand does not generate substitutions of inputs, even 

if they are permitted by the technology.  

 

 

11.12 General competitive equilibrium without free disposal 

 

In Paragraph 11.3 we introduced competitive equilibrium of pure 

exchange economy and we distinguished between economy with and 

without free disposal. Then, we examined equilibrium for the first case. We 

will now examine the equilibrium for the second case. In what follows we 

analyze only the pure exchange economy equilibrium. The extension to the 
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production economy is easy and does not give additional insight on the top 

of the observations presented for pure exchange economy.  

According to the Definition 11.4, the competitive equilibrium of a 

pure exchange economy  = ( Xi, i , i, i = 1,…, n) without free disposal is 

a vector of prices * kp  and an allocation 1* ( *,..., *)nx x x  such that  

* ( *)iix d p , where ( ) ( ) : '  for every ' ( )i i i i i i i id p x B p x x x B p  and 

( ) { : ω }i i i i iB p x X px p , for every 1,...,i n , and 1 1* ωn n

i i i ix .  

(With free disposal, we require * ( *)iix d p , where ( )id p  

( ) : '  for every ' ( )i i i i i ix B p x x x B p  and ( ) { : ω }i i i i iB p x X px p , 

for every 1,...,i n ,  and 1 1* ωn n

i i i ix ).
12

 

                                                 
12

 Usually in economic literature (for example Debreu, 1982), equilibrium without 

free disposal is defined by conditions 
1 1

* ω
n n

i i i i
x  and xi* di(p*) for every i = 1,…, n, 

so in an intermediate way with respect to the definitions of “without free disposal” and 

“with free disposal” used in this text. In what follows, we illustrate some characteristics of 

this intermediate equilibrium, called also “strong equilibrium” in contraposition to the one 

in this text which is called “weak equilibrium” because every equilibrium (x*, p*) that 

satisfies the conditions for “strong” equilibrium, that is 
1 1

* ω
n n

i i i i
x  and xi* di(p*) for 

every i = 1,…, n, satisfies also the conditions for “weak” equilibrium, that is
1 1

* ω
n n

i i i i
x  

and  xi* ( *)
i

d p  for every i = 1,…, n. In fact, the conditions 
1 1

* ω
n n

i i i i
x  and p*xi*  

p* i for every i = 1,…, n imply p*xi* = p* i for every i = 1,…, n, that is xi* ( *)
i

B p  and 

so, xi* ( *)
i

d p . The inverse property does not hold as we will see with some examples 

(Figures 11.16 and 11.17). The reasons for which we may prefer “weak” equilibrium (that 

is with budget constraints ( ) ( *)
i i

B p B p  instead of ( )
i

B p ) for the economy without free 

disposal are based on three convergent observations. 

 a) The first observation results from the payments generated by the exchange. 

These can be performed in a barter system, with the use of money or with the use of a credit 

system. If we use barter, the inequality pxi < p i requires that some quantity of a good is 

eliminated, but this possibility is excluded without free disposal. If we use money, we have 

a situation equivalent to the following: the agents deposit their endowments in a common 

warehouse in exchange for money at given prices. They use this money to get the desired 

goods from the same warehouse at the same prices. If pxi  p i for every i = 1,…, n and pxi 

< p i for some i, then some quantity of at least one good would remain in the warehouse, 

that is there would be free disposal. If, finally, the payments are credited, there is for every 

agent an account in which all the sales are credited and purchases are debited. Therefore, 

every exchange means an entry on credit for the agent that sells and on debit for the agent 

that buys. The sum of entries must be equal to zero. Then, the account of an agent cannot 

be in credit, just like we have that if pxi < p i for some i, without other agent account being 

in debit, that is pxi > p i for some other i, possibility that is excluded by the budget 

constraint. 

 b) The second observation results from taking into account that exchange ratios, and 

not accounting prices, are relevant in the budget constraint. Also with prices not necessarily 

nonnegative (negative prices can occur when free disposal is not assumed), the budget 

constraint has not to be modified if we put tp in place of p, with t  0. It must be that 

( )
i

B p = ( )
i

B p , but this condition is not satisfied if the budget constraint is an inequality.  
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We need weaker assumptions to prove the existence of the competitive 

equilibrium in the case without free disposal than in the case with free 

disposal. The conditions from Proposition 11.11, that require the set Xi to be 

non-empty, compact and convex, the system of preferences Xi, i  to be 

regular, continuous, convex and monotone and i to be a point in the 

interior of Xi for every 1,...,i n , can weaken the conditions on preferences. 

It is sufficient to assume that the system of preferences Xi, i  is regular, 

continuous and weakly convex. In other terms the indifference curves may 

be thick and consumption of global satiation   (that is, such that there is no 

other consumption in Xi that is preferred to it) may belong to the interior of 

the consumption set. The Proposition 11.18 introduces the continuity 

conditions that will be needed in Proposition 11.19 to prove competitive 

equilibrium. 

Proposition 11.18 If the consumption set Xi is non-empty, compact 

and convex, the system of preferences Xi, i  is regular, continuous and 

weakly convex and the endowment i is a point in the interior of Xi, then the 

budget set ( ) { : ω }i i i i iB p x X px p  and the demand set  

( ) ( ) : '  for every ' ( )i i i i i i i id p x B p x x x B p  are non-empty, compact 

and convex for every kp , the budget correspondence \{0}: k

i iB X  

is continuous and homogenous of degree zero and the demand 

correspondence \{0}: k

i id X  is upper hemicontinuous and 

homogenous of degree zero.  

Proof. It is immediate to show that the sets ( )iB p  and ( )id p  are non-

empty, compact and convex and the budget and demand correspondences 

are homogenous of degree zero (that is ( ) ( )i iB tp B p  and ( ) ( )i id tp d p  

for every t  0). The continuity of the budget correspondence can be proved 

by showing that it is both upper hemicontinuous (that is the sequences 
q op p  and 

q o

i ix x , with ( )q q

i ix B p , imply ( )o o

i ix B p ) and lower 

hemicontinuous (that is, if 
q op p  and ( )o o

i ix B p , then there exists a 

sequence ( )q

ix  such that ( )q q

i ix B p  and 
q o

i ix x ). It is upper 

hemicontinuous because the set ( , ) : ( )i i i ip x P X x B p  is closed if 

\{0}kP  is a closed set. It is lower hemicontinuous because of the 

following reasoning. Since i is a point in the interior of  Xi , there is a pair  

                                                                                                                                                         

c) As already noted, the conditions 
1

*
n

i i
x

1
ω

n

i i
 and p*xi*  p* i for every i = 

1,…, n imply p*xi* = p* i for every i = 1,…, n. Taking into account that the agents know 

the equilibrium conditions and that no choice such that pxi < p i is feasible, we deduce that 

the agents bound their choices to the bundles for which pxi = p i . Therefore, they limit 

their choice to the points in ( )
i

B p  also if their budget constraint is ( )
i

B p . As a result, we 

get the demand functions ( *)
i

d p , exactly those generated by the budget constraints ( )
i

B p . 
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,a b

i i ix x X  with o a o o b

i i ip x p p x . Then, for every sequence ( )qp  with 
q op p and ( )o o

i ix B p , let’s introduce two sequences ( )aq

ix  and ( )bq

ix  

where (1 )aq aq o aq a

i i ix t x t x  and (1 )bq bq o bq a

i i ix t x t x , with 

( )

( )

q a
aq i i

q o a

i i

p x
t

p x x
 and 

( )

( )

q b
bq i i

q o b

i i

p x
t

p x x
, so that 

q aq q bq q

i i ip x p x p . 

We find that , 0aq bqt t  for sufficiently large q, because q a o a

i ip x p x , 
q b o b

i ip x p x  
and 

q o o o o

i i ip x p x p , so that , 1aq bqt t . Moreover, 

always for q sufficiently large, we find that if 1aqt  then 1bqt  and 

viceversa, because 1aqt  only if q q o

i ip p x , which implies 1bqt . 

Consequently, for sufficiently large q, the sequence ( )q

ix , where 
q aq

i ix x  if 

1aqt  and 
q bq

ix x  if 1aqt , is composed of vectors ( )q q

i ix B p  because 
q q q

i ip x p , the set Xi is convex and (1 )q aq o aq a

i i ix t x t x  with 

0 1aqt  or (1 )q bq o bq a

i i ix t x t x  with 0 1bqt . Therefore, 
q o

i ix x  

because both 1aqt  and 1bqt  for q op p . Finally, the correspondence 

\{0}: k

i id X  is upper hemicontinuous because q op p  and 
q o

i ix x  

with ( )q q

i ix d p  imply ( )o o

i ix d p  for the following reasons. On one 

hand, since ( ) ( )q q q

i i ix d p B p  we get ( )o o

i ix B p  because the 

correspondence \{0}: k

i iB X  is upper hemicontinuous. On the other 

hand, for every point ( )o

iz B p , since the correspondence 

\{0}: k

i iB X  is also lower hemicontinuous, there is a sequence ( )qz  

such that ( )q q

iz B p  and qz z . Then, since 
q q

i ix z  because 

( )q q

i ix d p  and since preferences are continuous, we get 
o

i ix z . Since this 

relationship holds for every ( )o

iz B p  , we obtain  ( )o o

i ix d p .    

Homogeneity of the budget correspondences and of the demand 

correspondences allows us to standardize the prices, keeping in mind that 

they can also be negative since we do not assume free disposal. Therefore, 

we cannot consider the simplex as the set of prices. Let’s standardize, the 

prices by putting the norm of the vector of prices equal to 1. Therefore, the 

set of prices is the sphere with the radius equal to 1, that is  

                                  : 1kS p p   

We note that the set S is not convex and so we cannot use Kakutani 

theorem.
13

 We can, nevertheless, use the following theorem.   

                                                 
13

 Moreover, set S excludes the vector p = 0. This case, however, is irrelevant from 

the economic point of view. In fact, if p = 0, then (0)
i

B  = Xi for every i = 1,…, n and every 

agent can choose his satiation consumption. Then the equilibrium would exist only if the 
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Theorem:
14

 Let : 1kS p p  and let kZ  be a compact 

set. If : S Z  is an upper hemicontinuous correspondence with set ( )p   

non-empty and convex for every p S, then at least one of the following 

three alternatives is true: 

a) there exists a p* S such that 0 (p*); 

b) there exists a pair ( *, *)p z  with p* S and z* (p*) such that 

* 0z  and 
*

*
*

z
p

z
;  

c) there exists a triple ˆ( *, *, )p z z  with p* S, z* (p*) and ẑ ( p*) 

such that ˆ*, 0z z  and 
ˆ *

ˆ *

z z

z z
. 

Let’s take under consideration the aggregate excess demand 

correspondence :E S Z , where 1( ) ( ( ) ω )n
i i iE p d p . The set 

1 1{ ω }n n
i ii iZ X  is a non-empty and compact subset of k  if the 

consumption sets Xi, for 1,...,i n , are non-empty and compact. The 

correspondence :E S Z  is, under assumptions from Proposition 11.18, 

upper hemicontinuous, with sets E(p) being non-empty, compact and convex 

for every p S. Moreover, since ( ) ( )i id p B p , Walras law holds, that is we 

have ( ) 0pE p  for every p S (with ( ) 0pE p  we denote that 0pz  for 

every ( )z E p ). We can now introduce the equilibrium existence theorem. 

Proposition 11.19. (Competitive equilibrium existence in pure 

exchange economy without free disposal) There exists p* S for which 

0 ( *)E p  if the aggregate excess demand correspondence :E S Z , 

where Z is a compact subset of k , is upper hemicontinuous, homogenous 

of degree zero and such that the set ( )E p  is non-empty, convex and 

satisfies Walras law for every p S. 

Proof. We apply the theorem specified above because the 

correspondence :E S Z  satisfies its assumptions. We find out that the 

second of the three alternatives suggested by the theorem is excluded while 

both of the other two imply 0 ( *)E p . The first alternative indicates 

0 ( *)E p . The second alternative cannot occur because Walras law 

requires p*z = 0 for every ( *)z E p , while it requires * * * 0p z z  

since * 0z . The condition 
ˆ *

ˆ *

z z

z z
 required by the third alternative 

                                                                                                                                                         
endowments allowed all the agents to get their satiation consumption, a case that can be 

referred to as a paradise economy and not a real one.  

14
 This theorem is by Hart and Kuhn, 1975, p. 336. 
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can be represented by ˆ* (1 ) 0z z  with 
ˆ

ˆ*

z

z z
. Since the 

correspondence :E S Z  is homogenous of degree zero we get that 

ˆ*, ( *)z z E p  because ( *) ( *)E p E p . Then, since ( *)E p  is a convex set 

and ˆ*, ( *)z z E p , we get that ˆ* (1 ) ( *)z z E p  for every (0, 1), 

therefore also for 
ˆ

ˆ*

z

z z
, so as a result 0 ( *)E p .     

 As the first remark, note that if ( *, *)x p  is a competitive equilibrium, 

then also ( *, *)x p  is a competitive equilibrium. They are, nevertheless, 

only apparently different equilibria: the vectors of accounting prices p* and 

p* induce the same exchange ratios.
15

 

The more relevant remark considers equilibrium efficiency. Contrary 

to the case of the economies with free disposal, the first welfare theorem 

requires the introduction of a new assumption on the preferences of the 

agents (which is implicitly satisfied in the economies with free disposal
16

). 

                                                 
15

 Here, we show an economy for which there exists a “weak” equilibrium while 

there does not exist a “strong” equilibrium (this distinction was explained in footnote 12). 

Let’s consider an economy with two consumers and two goods, defined by the consumption 

sets 
2

1 2
[0,  2]X X , the endowments 

1 2
(1,  1)  and the utility functions 

2 2

11 1211 12

1 2 2

11 1211 12

 per 2

 per 2( 2) ( 2)

 x xx x
u

x xx x
 and 

2 21 22
2u x x . This economy, also 

if the preferences are not weakly convex, has a unique “weak” equilibrium 

1 2
* * (1,  1)x x , 

1 1
* ( ,  )

2 2
p , that is also strongly efficient. It does not have any 

“strong” equilibrium. Instead, it has multiple equilibria with free disposal (any prices in the 

simplex give rise to equilibrium). In Figure 11.16 and 11.17 we depict the indifference 

curves maps of the consumers, on which it is easy to show the “weak” competitive 

equilibrium. 
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16
 And also in the analysis of “strong” equilibrium.  
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Preferences have to exhibit a common element: either all agents like an 

increase of nominal wealth or all agents like a decrease of nominal wealth.  

In Figure 11.18 we show, in Edgeworth-Pareto box diagram, an 

economy with a unique competitive equilibrium that is inefficient (this 

economy, with two consumers and two goods is characterized by 

consumption sets 2

1 2 [0,  6]X X , endowments  1 = (2, 2),  2 = (4, 4) 

and utility functions 
2 2

1 11 12( 1) ( 1)u x x , 2 21 22u x x . The 

equilibrium is  x1* = (2, 2),  x2* = (4, 4),  
1 1

* ( ,  )
2 2

p ).
17

 

 

The proof of the first welfare theorem for the case without free 

disposal requires the following assumption.  

Definition 11.6 (Dislike for a decrease of nominal wealth) The i-th 

consumer weakly dislikes a decrease of nominal wealth with respect to 

( , )ip  if ' ( )i i ix d p  (that is 'i i ix x  for every ( )i ix d p ) for every 'i ix X  

with 'i ipx p . He strongly dislikes if ' ( )i i ix d p . He weakly (strongly) 

                                                 
17

 This “weak” equilibrium is not “strong”, so this economy does not have any 

strong equilibrium. If we allow for free disposal, then we find out that there exists the 

unique equilibrium  x1* = (1, 1), x2* = (4, 4), 
1 1

* ( ,  )
2 2

p , that is weakly (but not 

strongly) efficient.  
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dislikes an increase of nominal wealth if ' ( )i i ix d p  ( ' ( )i i ix d p ) for every 

'i ix X  with 'i ipx p .
18

 

Proposition 11.20 The i-th consumer weakly dislikes, with respect to 

any pair ( , )ip , where i is a point in the interior of Xi, either a decrease or 

an increase of nominal wealth if the consumption set Xi is non-empty, closed 

and convex and the system of preferences Xi, i  is regular, continuous and 

weakly convex. (In other words, with these assumptions, it must be that 

' ( )i i ix d p  for every 'i ix X  with 'i ipx p  or for every 'i ix X  with 

'i ipx p ). He strongly dislikes if the preferences are locally nonsatiated 

(as defined in Paragraph 3.2).   

Proof. Let’s consider a quadruple (p, i, xi , xi ) where p S, i is a 

point in the interior of Xi and ',  "i i ix x X  with 'i ipx p  and "i ipx p . 

The proposition is proved if we show that it is impossible to have 

' ( )i i ix d p  and " ( )i i ix d p  at the same time. Let * ' (1 ) "i i ix x x  

with 
( " )

( " ')

i i

i i

p x

p x x
 so that *i ipx p . Also *i ix X  since Xi is convex 

and (0, 1). Therefore, * ( )i i ix d p . Then, if "'i i ix x , since the 

preferences are weakly convex, we get * "i i ix x , by which (since 

* ( )i i ix d p ) we get " ( )i i ix d p ; if "'i i ix x , then also * 'i i ix x , by 

which ' ( )i i ix d p . Since at least one of the following " ( )i i ix d p  or 

' ( )i i ix d p  must hold, then ' ( )i i ix d p  and/or " ( )i i ix d p  are false.. We 

will now show that it is impossible that both ' ( )i i ix d p  and " ( )i i ix d p  

are true if the preferences are locally nonsatiated. This assumption implies 

that there is a point 'ix  in the neighborhood of 'ix  such that 'i ipx p  and  

' 'i i ix x , and, in the neighborhood of "ix , a point "ix  such that "i ipx p  

and " "i i ix x . Proceeding as in the preceding part of the proof, that is 

introducing a point * ' (1 ) "i i ix x x  with 
( " )

( " ')

i i

i i

p x

p x x
, we find that 

if ' "i i ix x , then also * "i i ix x , by which (since  * ( )i i ix d p ) we get that 

" " ( )i i i i ix x d p ; if " 'i i ix x , then also * 'i i ix x , by which we get 

' ' ( )i i i i ix x d p . As a consequence, at least one of the two relationships 

" ( )i i ix d p  and ' ( )i i ix d p  must hold.       

                                                 
18

 Note that a consumer always weakly dislikes a decrease of the nominal wealth if 

his choice is represented by the demand function ( )
i

d p  (which is taken under 

consideration  by the “strong” equilibrium analysis, in which p > 0). He strongly dislikes a 

decrease if the preferences are locally nonsatiated.  



 46 

We can now introduce the first welfare theorem for a pure exchange 

economy without free disposal. 

Proposition 11.21 (First Welfare Theorem) A competitive equilibrium 

(x*, p*) without free disposal of an economy  = ( Xi, i , i, i =1,…, n) is 

weakly (strongly) efficient if all consumers (strongly) dislike a decrease or 

an increase of nominal wealth with respect to (p*, i). (In other words, we 

require that there is similarity between consumers, in the sense that they all 

dislike a decrease of nominal wealth or that they all dislike an increase of 

nominal wealth).  

Proof. Let’s consider an equivalent proposition according to which if 

an allocation is not weakly efficient, then it cannot belong to a competitive 

equilibrium with prices p*. If x is not a weakly efficient allocation, then 

there exists a feasible allocation x , that is with 1 1' ωn n

i i i ix  and so 

1 1* ' *ωn n

i i i ip x p , such that 'i i ix x  for every 1,...,i n . If 

* ' *ωi ip x p  for some i, then ( *)iix d p , as 'i i ix x  and ' ( *)i ix B p . 

Therefore (x, p*) can be a competitive equilibrium only if * ' *ωi ip x p  for 

every 1,...,i n . However, if * ' *ωi ip x p  for every 1,...,i n , since 

1 1* ' *ωn n

i i i ip x p , then there is at least one (j-th) consumer for whom 

* ' *ωj jp x p  and one (h-th) consumer for whom * ' *ωh hp x p . Since 

every consumer weakly dislikes the decrease (or increase) of nominal 

wealth, at least one of the following relationships must be true 

' ( *)j j jx d p  and/or ' ( *)h h hx d p . Therefore, since 'j j jx x  and 

'h h hx x , at least one of the following relationships ( *)j j jx d p  and 

( *)h h hx d p  must hold. As a result, (x, p*) is not a competitive 

equilibrium. The proof of strong efficiency is analogous. If x is not a 

strongly efficient allocation, then there exists a feasible allocation x , that is 

with 1 1' ωn n

i i i ix  and so 1 1* ' *ωn n

i i i ip x p , such that 'i i ix x  for 

every 1,...,i n  and 'i i ix x  for at least one i. If * ' *ωi ip x p  for every 

1,...,i n , so it is also for the consumer for whom 'i i ix x . Then for this 

consumer ( *)iix d p  since 'i i ix x  and ' ( *)i ix B p . Therefore, (x, p*) can 

be a competitive equilibrium only when it is not true that * ' *ωi ip x p  for 

every 1,...,i n . Then, since 1 1* ' *ωn n

i i i ip x p , there is at least one (j-th) 

consumer for whom * ' *ωj jp x p  and another (h-th) consumer for whom 

* ' *ωh hp x p . Since every consumer strongly dislikes the decrease (or 

increase) of nominal wealth, at least one of the following relationships must 

be true ' ( *)j j jx d p  and/or ' ( *)h h hx d p . Therefore, since 'j j jx x  and 

'h h hx x , at least one of the following relationships ( *)j j jx d p  and 

( *)h h hx d p  must hold. As a consequence, (x, p*) is not a competitive 

equilibrium.      
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The assumption used in Proposition 11.21 is a sufficient condition in 

order for the first welfare theorem to hold, but it is not a necessary 

condition. In fact, it is possible to find examples in which a competitive 

equilibrium is efficient even when not all the consumers weakly dislike a 

decrease (or increase) of nominal wealth.
19

 

There is no simple relation between the free disposal and non free 

disposal equilibria.
20

 There are economies that have a non free disposal 

equilibrium (also strongly efficient) and no free disposal equilibrium. There 

are also economies that have a free disposal equilibrium (also strongly 

efficient) and no non free disposal equilibrium.  

In Figures 11.24 and 11.25 we show Edgeworth-Pareto box diagrams 

of two economies with two consumers and two goods. The indifference 

curves of the two consumers of the economy shown in Figure 11.24 are 

represented, respectively, in Figures 11.22 and 11.23 (the numbers near the 

indifference curves show utility). The two consumers have consumption set 

Xi = [0, 4]
2 

and endowment i = (2, 2) for i = 1, 2. There is a non free 

disposal competitive equilibrium that is represented by xi* = i for i = 1, 2 

and 
1 1

* ( , )
2 2

p . There is no free disposal equilibrium, as we see 

from the price-consumption curves, drawn (for the free disposal case) as 

dashed lines in Figures 11.22 and 11.23 and reported in Edgeworth-Pareto 

box diagram in Figure 11.24. In fact, in Figure 11.24, none of the points on 

the price-consumption curve of consumer 1 is on south-west from any point 

on the price-consumption curve of consumer 2, as it is necessary in order to 

have a free-disposal equilibrium. 

                                                 
19

 For an economy with two agents and two goods, we depict the preferences and 

endowments of the consumers (Figures 11.19 and 11.20) and the Edgeworth-Pareto box 

diagram (Figure 11,21). We show a competitive equilibrium that is strongly efficient even 

if one of the consumers strongly dislikes a decrease of nominal wealth and the other one an 

increase. 
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20

 On the contrary, as we have already shown, a “strong” equilibrium is also a 

“weak” equilibrium. Moreover, a “strong” equilibrium is weakly efficient while a “weak” 

equilibrium may be inefficient as shown in Figure 11.18. Nevertheless, it is also possible 

that a “weak” equilibrium that is also strongly efficient exists for an economy that has no 

“strong” equilibria, as in the case represented in Figures 11.16 and 11.17.  
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In the economy represented in Figure 11.25, the first consumer has 

preferences described by the indifference curves in figure and the second 

consumer by the utility function 2 21 22min{ , }u x x , with Xi = [0, 4]
2  

and i 

= (2, 2) for  i=1, 2. There is the free disposal equilibrium x1* = (0, 0), x2* = 

(2, 2) and (p1/p2)* = 1. There is no equilibrium without free disposal as 

highlighted by the corresponding price-consumption curves. 

 

We note that the assumption that the preferences are locally 

nonsatiated is the crucial element in order for the competitive equilibrium to 

be strongly efficient, both in the case with or without free disposal.
21

  

The second welfare theorem and the consideration of production for 

an economy without free disposal do not give any additional insight with 

respect to the analysis of an economy with free disposal.
22

 

 

 

                                                 
21

 In this last case, both for “strong” and “weak” equilibrium. 
22

 For this last analyses, see Montesano, 2001.  
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11.13 Competitive equilibrium with a continuum of agents  

The assumption that aggregate excess demand functions are 

continuous with respect to prices (or, in general, that excess demand 

correspondences are convex valued so they associate a convex set of 

consumption vectors to every price vector and they are upper 

hemicontinuous) is crucial to prove equilibrium existence (as shown in 

paragraphs 11.4 and 11.8). In order to ensure that this assumption is satisfied 

it is usually assumed (for example in paragraph 11.8) that consumers’ 

preferences and production sets are convex. In fact, when preferences are 

not convex then individual choice does not, in general, satisfy the above 

indicated continuity condition and aggregate demand does not satisfy it as 

well. The same holds for supply when production sets are not convex. 

Nevertheless, assumption that preferences and production sets are convex is 

rather strong. Many consumers have preferences that are not convex. For 

example, a consumer can prefer a glass of red wine to a half glass of red and 

a half glass of white wine, and at the same time prefer a glass of white wine 

to a half glass of red and a half glass of white wine. The same can occur for 

production: for example production sets are not convex if the returns to 

scale are not non increasing.  

Therefore, we will now study whether it is possible to avoid convexity 

assumption on preferences. We must accept that individual demand does not 

have the desired feature (it is not a continuous and/or a convex valued 

function and/or an upper hemicontinuous correspondence). However, these 

features are satisfied for aggregate demand. Such a result can be obtained if 

we consider a continuum, instead of a discrete number, of consumers, for 

example with 0,1i  instead of 1,2,...,i n . (The continuity of 

consumers does not imply that the number of consumers is infinite. We are 

in an analogous situation if we consider a continuous distribution of 

incomes represented by a density function of frequency ( )n y  with 

min max,y y y . This does not imply infinite population: the size of 

population is max

min
( )

y

y
N n y dy  and total income is max

min
( )

y

y
Y yn y dy ). By 

analogy for the individual and aggregate supply of a firm. 

Example 11.1 We consider pure exchange economy where every 

consumer is endowed with ( , )m x  and (quasilinear) utility function 

  
2 3 4

ln                                                            for 1

1 ln( 1)                                               for 2

( 1) ( 1) 2( 1) ( 1)   for (1,2)

u m x x

u m x x

u m x x x x x

  

where x  indicates consumption of a good and m  is the 

expenditure on other goods. As a result, individual demand function is 
1 1 for 1,     1  for 1,      1,2  for 1x p p x p p x p   

where p indicates the price of the examined good. This function is 

discontinuous at 1p  (where it is a correspondence with two isolated 
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values). The aggregate demand, if n is an integer number, is also 

discontinuous for 1p . Competitive equilibrium requires that the following 

condition is satisfied: nx nx  for 1p  and 1 2 1 22 ( )n n n n x  for 1p , 

where 1n  is the number of consumers with 1x  and 2n  with 2x . In the 

discrete case, that is when n, n1 and n2 are integer numbers, competitive 

equilibrium can either exist or not: if 2n  and 7/ 4x  there is no 

equilibrium; if 4n  and 7/ 4x  there is one equilibrium with 1p , 

1 1n  and 2 3n ; if 2x  equilibrium does not exist independent of the 

number of consumers. In the continuous case, the equilibrium always exists 

and is represented: when \ (1, 2)x , by x x  with 
1

p
x

 if [0,1]x  

and 
1

1
p

x
 if [2, ]x ; and when [1,2]x , by 1p  with 1x  for 

share 1 2 x  of consumers and 2x  for share 2 11 1x . In 

fact in the continuous case, the shares α1 and α2 are any real number in the 

interval [0,1], while in the discrete case they have to be rational numbers, 

moreover equal to the ratio between a (non negative and not higher than n) 

integer number and number of consumers n. In Figure 11.26 we represent 

individual demand function; in Figure 11.27 there are aggregate demand and 

supply functions for 2n  and 7/ 4x ; and in Figure 11.28 demand and 

supply functions for the case with a continuum of consumers. 

 

 

Analysis of general equilibrium with a continuum of agents was 

introduced by Aumann (1964 and 1966). Denoting with I the set of 

consumers, pure exchange economy (that is, a type of economy described in 

paragraph 11.3) becomes   = ( X(i), i , (i), i I ). It differs in 

comparison to the discrete case only because we have i I  instead of 

1,...,i n  (and a change in notation that introduces i as an argument of a 

function rather than an index). Individual consumption choice is  

( ; ) { ( ) ( ; ) : ( ) ( ) '  for every ( ) ' ( ; )}id p i x i B p i x i x i x i B p i  
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where ( ; ) { ( ) ( ) : ( ) ω( )}B p i x i X i px i p i  is a budget constraint and all 

the properties already stated for individual demand still hold. Feasibility 

condition changes and is now given by 

( ; ) ( )
i I i I

d p i di i di  

(that is, in the continuous case, aggregate demand is an integral, instead of a 

sum, of the individual demands).  

Peculiarities of the general equilibrium analysis with a continuum of 

agents are related to this condition, that is to the presence of an integral 

(instead of a sum). The crucial assumption is that the set I allows for 

nonatomic (Lebesgue) measure spaces. That is, it is possible to subdivide 

every subset of I of positive measure (with respect to the quantity of the 

good demanded or endowment) into two subsets with positive measure. In 

other words, there does not exist an i I  who has a finite endowment of 

goods or consumption, it can only have and consume infinitesimal 

quantities. With this assumption, that implies that there are no agents with 

market power, it is possible to prove equilibrium existence without 

assuming that individual preferences are convex. This assumption 

substitutes for the convexity of preferences when we prove that the demand 

correspondence is convex valued. With other usual assumptions we can 

obtain a proof for equilibrium existence.
23

  

Indivisible goods, which quantity is represented by an integer number, 

are a remarkable case of non convexity (for example, cars are indivisible). 

In this case consumption set iX  of every consumer is non convex (not only 

preferences are not convex) and the individual demand correspondence has 

codomain composed only of integer numbers. The presence of indivisible 

goods can cause competitive equilibrium inexistence as shown by the 

following example.  

Example 11.2 In a pure exchange economy there are two consumers, 

two indivisible goods and one infinitely divisible good, with 
4

0,1iX  for 1,2i . The endowments of the two consumers are 

respectively equal to 1 (1,1,0,0,1)  and 2 (0,0,1,1,1)  and their 

preferences are represented by utility functions 

1
1 11 12 13 14 11 13 12 14 11 12 13 14 11 14 12 13

1

41 1
2( ) ( )

2 5 1

m
u x x x x x x x x x x x x x x x x

m
  

2
2 21 22 23 24 21 24 22 23 23 24 21 22 21 23 22 24

2

41 1
2( ) ( )

2 5 1

m
u x x x x x x x x x x x x x x x x

m
 

where 0,1ihx  denotes the quantity of the indivisible good, for 1,2i  

and 1,2,3,4h , and im  is the quantity of the divisible good for 1,2i . The 

initial allocation  1 2( , )  is Pareto efficient, with 1 1 2 2( ) ( ) 7u u . In 

                                                 
23

 A detailed description of a model with a continuum of agents can be found in 

Ellickson (1993: the model by Aumann is presented in Chapter 3, pp. 99 and ss., and the 

problem of equilibrium existence is discussed in pp. 352-353).  
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fact, every other feasible allocation reduces the utility of at least one 

consumer: taking into account that every bundle of goods with less than two 

units of the indivisible goods is worse than the endowment, 

8
2 7 ( )

3
i i iu u , and considering feasible allocations with two units 

of indivisible good per consumer, we get the following utilities for the 

feasible allocations 

1
1 1

1

4
(1,1,0,0, ) 5

1

m
u m

m
,  2

2 2

2

4
(0,0,1,1, ) 5

1

m
u m

m
, with 1 2 2m m ; 

1
1 1

1

4
(1,0,1,0, ) 6

1

m
u m

m
,  2

2 2

2

421
(0,1,0,1, )

5 1

m
u m

m
, with 1 2 2m m ; 

1
1 1

1

421
(1,0,0,1, )

5 1

m
u m

m
,   2

2 2

2

4
(0,1,1,0, ) 6

1

m
u m

m
, with 1 2 2m m ; 

1
1 1

1

421
(0,1,1,0, )

5 1

m
u m

m
,   2

2 2

2

4
(1,0,0,1, ) 6

1

m
u m

m
, with 1 2 2m m ;  

1
1 1

1

4
(0,1,0,1, ) 6

1

m
u m

m
,  2

2 2

2

421
(1,0,1,0, )

5 1

m
u m

m
, with 1 2 2m m ;  

1
1 1

1

49
(0,0,1,1, )

2 1

m
u m

m
,    2

2 2

2

49
(1,1,0,0, )

2 1

m
u m

m
, with 1 2 2m m ; 

from which, as a result, we get that there are no feasible allocations better 

for both of the consumers than the initial endowment (because the 

inequalities 
4

6 7
1

i

i

m

m
 and 

421
7

5 1

j

j

m

m
 are incompatible for 

2i jm m ). Then we conclude that the initial allocation is the only 

candidate for a competitive equilibrium allocation. However, it is not an 

equilibrium. In fact, the bundle of goods chosen by the first consumer is 

1 (1,1,0,0,1)  only if 3 2p p  and 4 1p p  (where hp , with 1,2,3,4h , 

are prices of the indivisible goods) since 1 1 1(1,0,1,0,1) ( )u u  and 

1 1 1(0,1,0,1,1) ( )u u . By analogy, the bundle of goods chosen by the 

second consumer is 2 (0,0,1,1,1)  only if 1 3p p  and 2 4p p  because 

2 2 2(1,0,0,1,1) ( )u u  and 2 2 2(1,0,0,1,1) ( )u u . However, the indicated 

inequalities are incompatible, the first ones requiring 3 4 2 1p p p p  and 

the second ones 1 2 3 4p p p p . Therefore, competitive equilibria do not 

exist for the examined economy (consequently, also second welfare theorem 

does not apply: there is one efficient allocation that is not supported by a 

competitive equilibrium).  

Equilibrium existence proof can be obtained for the case with 

indivisible goods assuming that their importance is low, in the sense that 

there is a (sufficient) amount of divisible goods that are appreciated by 

consumers in such a way that an increase in their quantity in the 

consumption bundle is able to compensate for every decrease in the quantity 
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of indivisible good. This way we can get an approximate equilibrium 

(Broome, 1972). Then the equilibrium is obtained assuming presence of a 

continuum of individuals and that the divisible goods are pervasively 

distributed (Mas-Colell, 1977), provided that there is a finite number of 

indivisible goods. For example, with respect to the preceding example, let 

there be a continuum of agents with population composed of 1 [0,1]  

agents of type 1 (that is with endowments and preferences equal to those of 

the first consumer) and 2 11  of agents of type 2 and 2 1  (with 

2 1  we get an analogous equilibrium). As a result, we get many 

competitive equilibria. For example there are competitive equilibria with  

prices 
1 2

7

3
p p  and 

3 4 1

2

3
p p p  and allocation represented by 

bundle of goods 
5

(1,0,1,0, )
3

 for a share of consumers (all of the first type) 

equal to 1

1

2
, by bundle 

5
(0,1,0,1, )

3
 for the residual share, equal to 1

1

2
, of 

the consumers of the first type, by bundle (0,0,1,1,1)  for share 2 1  of 

the consumers of the second type, by bundle 
1

(0,1,1,0, )
3

 for a share equal to 

1

1

2
 of the consumers of the second type, and by bundle  

1
(1,0,0,1, )

3
 for the 

residual share, equal to 1

1

2
, of the consumers of the second type. In 

equilibrium consumer of the first type achieve utility 1

17

2
u  and those of 

the second type 2 7u .   

 

 

11.14 Competitive equilibrium with a continuum of goods. Spatial 

economy: location and extent  
 

The presence of continuum of agents with finite number of goods 

favors the possibility of competitive equilibrium existence in the sense that 

it yields thicker markets. In fact, as indicated, the presence of a continuum 

of agents allows us to relax convexity of preferences assumption . What 

happens if, on the other hand, we introduce a continuum of goods, leaving 

the number of agents finite? 

We have already seen a case with a continuum of goods when 

examining intertemporal choice, in which (in paragraphs 6.2-3 and 4) 

consumption and production are introduced as continuous functions of time. 

Moreover, we can have a continuum of goods with respect to space (that is 

their location) and other qualitative elements. Competitive equilibrium 

existence for an economy with a continuum of goods (infinitely divisible) 
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and with a finite number of agents does not require particular assumptions 

other than the usual ones (in particular convexity), from the point of view of 

economics. We need, however, a rather complex mathematic tool to deal 

with spaces with infinite dimensions. This type of analysis will not be 

presented here (an interested reader can refer to an excellent presentation in 

Mas-Colell and Zame, 1991). 

A much more complex problem is represented by a case in which 

there is double continuity in the economy. That is, there is a continuum of 

goods and agents. (These economies are called large-square economies. See 

Ostroy, 1984). 

Till now we considered a continuum of goods that can yet be infinitely 

divided. For example, considering a continuum of goods in function of the 

space point where they are available, the feasibility condition requires that 

the demanded quantity by the agents is, in any point in the space, not higher 

than the one available. However, the assumption of perfect divisibility 

cannot always be introduced. We consider, for example, the space as a good 

(we need space for living, for industrial factory, etc.). Now the space must 

be considered, in many economies, locally indivisible. It is such if we 

assume that every location can be used/owned by only one agent. This 

indivisibility is local, in the sense that a certain space can be subdivided 

infinitely and therefore used by a large number of agents, however with 

different locations. In every location only one agent uses the space. 

Therefore, while not all the agents can have a painting by Picasso (paintings 

by Picasso are indivisible goods), all can have living space (bigger or 

smaller, but not in the same precise location). The available space is then 

represented by a set (for example in physical space with three dimensions) 

and feasibility condition requires that the allocation is a partition of this set. 

That is, denoting the total space available with set dA  (where 

1,2,3d  is physical dimension of the examined space) and with 2A  its 

power set (that is the set of all subsets of A ), a feasible allocation among n 

agents is represented by a vector of subsets 1( )n

i iE , with 2A

iE  for 

1,...,i n , i jE E  for every pair , 1,...,i j n  with i j , and 

1

n

i iE A  (or ,A  in the case with free disposal). Let’s consider a 

continuum of agents, with [0,1]i , each of them choosing a space in only 

one location, and let’s denote the extent and location of the space belonging 

to agent i with the pair ( ( ), ( ))s i x i  (so with ( )s i  and ( )x i A ) and with 

( )m A  total extent of A. Then, the feasibility condition requires that the 

functions ( ( ), ( ))s i x i  satisfy conditions ( )x i A  for every [0,1]i , 

( ) ( )x i x j  for every pair , [0,1]i j  with i j , and 
[0,1]

( ) ( )
i

s i m A  (or 

( )m A ).  

A simple example demonstrates the complexity of the spatial 

competitive equilibrium analysis.  
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Example 11.3  Let’s consider an economy in which the only good is 

space and the available space is one dimensional and given by an interval 

[0,1]A . There is a continuum of agents, all with the same utility function 

(that has, as its object, the extent and location of the space belonging to the 

agent), however with different endowments. The utility function of the 

agents is therefore of the type :u A , so with ( , )u u s x , where 

s  denotes space extent and x A the location. In the example we 

assume 
1

ln(1 )u x
s

. The endowment is not equal among the agents: it 

cannot be the same because different agents cannot be endowment with the 

same location. Therefore, ( ) ( ( ), ( ))i i i , with [0,1]i . In this example 

we assume 21
(1 )

2
i  and i . The equilibrium is represented by 

functions ( ), ( ), ( )s i x i r x  that respectively denote space allocation, that is 

extent and location of the space for every agent, and the price of the space 

for every location, that is the rent distribution. In order to determine 

equilibrium we need to look at individual choices of the agents and 

introduce feasibility condition (that is peculiar for the space given the local 

indivisibility assumption). The choice is represented by a solution to the 

problem 

                           
( ( ), ( )) ( ( ); )

max ( ( ), ( ))
s i x i B r x i

u s i x i , 

 where ( ( ); ) ( ) , ( ) [0,1]: ( ) ( ( )) ( ) ( ( ))B r x i s i x i s i r x i i r i  is the 

budget constraint. Introducing Lagrangian function ((understanding the 

dependence of the choice on i ) 

                           L( , , ) ( , ) ( ( ) ( ))s x u s x r sr x  

we obtain for the examined example (where  
1

ln(1 )u x
s

) three first 

order conditions  

( ) ( ) 0,r sr x                   
2

1
( ) 0r x

s
,                  

1
'( ) 0

1
sr x

x
; 

and a second order condition 

                    
3

2

0 ( ) '( )

( ) 2 '( ) 0

1
'( ) '( ) "( )

(1 )

r x sr x

r x s r x

sr x r x sr x
x

 

Then, the first order conditions require that the two following equations are 

satisfied 

  ( ) ( ( )) ( ) ( ( )) 0,i r i s i r x i                          
( )

'( ( )) ( ( ))
1 ( )

s i
r x i r x i

x i
, 

and the second order condition requires (with 
2

1

( )s r x
)  
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                2

2

1 1
( ( ( )) ( ( )) "( ( )) 0

(1 ( )) ( )
r x i r x i r x i

x i s i
 

The feasibility condition of the choices implies that the demanded space 

extent in a given location is equal to the one therein available, and the same 

condition applies to the endowments. Considering the endowment, the 

agents of type i  have space in location ( )i , where they possess extent 

( )i . Indicating with ( )n i  the density of the agents of type i , for which 

( )n i di  is the number of agents of the type between i  and i di  and 

( ) ( )i n i di  the extent of the space that they have, we get that this extent 

must coincide with available extent in this location, that is ( )d i . Therefore 

we get that ( ) ( ) ( )i n i di d i , that is 
1 ( )

( )
( )

d i
n i

i di
. In the example, 

having 21
(1 )

2
i  and i , we get 

2

2
( )

(1 )
n i

i
. Consider now the 

demand. We get, by analogy, the condition ( ) ( ) ( )s i n i di dx i , by which 

since  
1 ( )

( )
( )

d i
n i

i di
 we get 

1 ( ) 1 ( )

( ) ( )

dx i d i

s i di i di
. In the example, 

given 21
(1 )

2
i  and i , we get condition 

                                           
2

( ) 2 ( )

(1 )

dx i s i

di i
. 

Accounting for the first order conditions and assuming what was given by 

the example, we get the following system of three equations  

                          21
(1 ) ( ) ( ) ( ( )) 0,

2
i r i s i r x i  

                          
( )

'( ( )) ( ( ))
1 ( )

s i
r x i r x i

x i
,  

                           
2

( ) 2 ( )

(1 )

dx i s i

di i
 

in three unknown functions ( ), ( ), ( )s i x i r x . This differential system includes 

unknown functions as functions of functions. In the case of our example, 

this system allows for two solutions: 

21
(1 ) ,

2
s i                      ,x i                        

21
(2 )

4
0

x x

r r e  

and 

1,s                                  
1

,
1

i
x

i
                 0

1

r
r

x
. 

However, the first solution does not satisfy second order condition. The 

second solution satisfies it. Therefore, there is only one competitive 

equilibrium, given by the second solution, with all the agents with the same 

space extent (that is different from the endowment), and location reversed 
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with respect to the endowment (the agent 0i  has locations 0  and 

1x , agent 1i  has 1 and 0x , and the function i  is increasing 

and 
1

1

i
x

i
 is decreasing in i) and with rent distribution decreasing in x (as 

expected, because utility is decreasing with respect to location x ).
24

 

 

 

 

 

 

 

  

 

                                                 
24

 The theme of this example belongs to the field of the spatial economics, that 

includes regional and urban economics. See Mills ed., 1987, and Papageorgiou and  Pines, 

1999. The example is of the type used in Montesano, 2003.         


