Instructor	Daniele Durante	
Contact Information	Department of Decision Sciences Sciences Via Roentgen, 1, 20136 Milano, 3-D1-05	⊠: daniele.durante@unibocconi.it web: https://danieledurante.github.io/web/
Objectives	The course will combine methods, applications, theory and computational aspects in Statistical Machine Learning. More specifically, methods will be motivated and evaluated with a focus on applied problems, but the overarching goal will be on the general methodological framework, including theoretical results and statistical properties. The topics will be presented via a careful discussion of the original papers.	
Syllabus	 An Introduction to Statistical and Machine Learning [L1 – L2] Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science. 16(3): 199–231. Jordan, M.I. (2019). Artificial intelligence—the revolution hasn't happened yet. Harvard Data Science Review. 1(1) + Candes, E., Duchi, J., Sabatti, C. (2019). Statistics and the oncoming AI revolution. Harvard Data Science Review. 1(1) + Donoho, D. (2019) What's missing from today's machine intelligence juggernaut? Harvard Data Science Review. 1(1) Efron, B. (2020). Prediction, estimation, and attribution. Journal of the American Statistical Association. 115(530): 636–655. Regression Trees, Bagging, Boosting and (Causal) Random Forests [L3 – L4 – L5] 	
	 Breiman, L., Friedman, J. H., Olshen, R. A. and Ston Trees. Chapman & Hall. Breiman, L. (1996). Bagging predictors. Machine Learn Breiman, L. (2001). Random forests. Machine Learn Friedman, J., Hastie, T. and Tibshirani, R. (2000). A of boosting. The Annals of Statistics, 28(2): 337–40 Wager, S., and Athey, S. (2018). Estimation and E using random forests. Journal of the American Statistics 	earning. 24(2): 123–140. ning. 45(1): 5–32. Additive logistic regression: A statistical view 7. inference of heterogeneous treatment effects
	 3. Bayesian Trees and Bayesian Additive Regression Trees [L6 – L7] Chipman, H. A., George E. I. and McCulloch R. E. (1998). Bayesian CART model search. Journal of the American Statistical Association. 93(443): 935–948. Chipman, H. A., George E. I. and McCulloch R. E. (2010). BART: Bayesian additive regression trees. The Annals of Applied Statistics. 4(1): 266–298. 	
	 4. Conformal Inference/Prediction [L8 – L9] Angelopoulos, A.N., and Bates, S. (2023). Conformal prediction: A gentle introduction. Foundations and Trends® in Machine Learning, 16(4): 494–591. 	
	 5. Topics in Nonparametric Density Regression [L1 Quintana, F. A., Müller, P., Jara, A., and MacEach process and related models. <i>Statistical Science</i>, 37(1) 	hern, S. N. (2022). The dependent Dirichlet
	 6. Topics in Bayesian Unsupervised Learning [L11 – L12] Hoff, P. (2021). Additive and multiplicative effects network models. Statistical Science. 36: 34–50. Legramanti, S., Rigon, T., Durante, D. and Dunson, D.B. (2022). Extended stochastic block models with application to criminal networks. Annals of Applied Statistics. 16(4): 2369–2395. Gopalan, P., Hofman, J.M., and Blei, D.M. (2015). Scalable recommendation with hierarchical Poisson factorization. In UAI 2015 Proceedings, pp. 326-335. + Gopalan, P., Ruiz, F.J., Ranganath, R., and Blei, D. (2014). Bayesian nonparametric Poisson factorization for recommendation systems. In AISTATS 2014 Proceedings, pp. 275-283. 	
	Additional references to specific articles will be suggested during the course.	

GRADING The evaluation is based on an individual project in which the student is asked to provide a critical and thoughtful discussion of an interesting topic considered during the course.